Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 05.11.2022. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
(1.5) Půjčeno:3x 
BK
6th ed.
Oxford : Oxford University, 1998
xvi,997 s. : il. + 1 CD-ROM (2001)

objednat
ISBN 0-19-850101-3 (brož.)
Obsahuje ilustrace, předmluvu, rejstřík
Exemplář z roku 1998 má fyzický popis: xvi, 1014 s. : il. + 1 CD-ROM
Chemie fyzikální - učebnice vysokošk.
000078778
Summary of contents : Introduction: orientation and background 1 // Part 1: Equilibrium 11 // 1 The properties of gases 13 // 2 The First Law: the concepts 45 // 3 The First Law: the machinery 81 // 4 The Second Law: the concepts 97 // 5 The Second Law: the machinery 125 // 6 Physical transformations of pure substances 141 // 7 Simple mixtures 163 // 8 Phase diagrams 191 // 9 Chemical equilibrium 215 // 10 Equilibrium electrochemistry 243 // Part 2: Structure 283 // 11 Quantum theory: introduction and principles 285 // 12 Quantum theory: techniques and applications 313 // 13 Atomic structure and atomic spectra 343 // 14 Molecular structure 387 // 15 Molecular symmetry 427 // 16 Spectroscopy 1: rotational and vibrational // spectra 453 // 17 Spectroscopy 2: electronic transitions 497 // 18 Spectroscopy 3: magnetic resonance 527 // 19 Statistical thermodynamics: the concepts 567 // 20 Statistical thermodynamics: the machinery 593 // 21 Diffraction techniques 619 // 22 The electric and magnetic properties of // molecules 649 // 23 Macromolecules and colloids 679 // Part 3: Change 721 // 24 Molecules in motion 723 // 25 The rates of chemical reactions 761 // 26 The kinetics of complex reactions 793 // 27 Molecular reaction dynamics 819 // 28 Processes at solid surfaces 849 // 29 Dynamic electrochemistry 877 // Further information 905 // Data section 917 // Answers to exercises 955 // Answers to problems 980 // Partial answers to microprojects 996 // Index 998 //
CONTENTS : 0 Introduction: orientation and background The structure of science Matter Energy // Contributions to the energy // Energy units Equipartition // The quantization of energy The populations of states Further reading // Part 1: Equilibrium // 1 The properties of gases The perfect gas // The states of gases // The gas laws // The kinetic model of gases // Real gases // Molecular interactions // The van der Waals equation // The principle of corresponding states // Checklist of key ideas Further reading Exercises Problems // 2 The First Law: the concepts The basic concepts // 2.1 Work, heat, and energy // 2.2 The First Law // Work and heat // Expansion work Heat transactions Enthalpy // Adiabatic changes // nermochemistry // Standard enthalpy changes Standard enthalpies of formation ’ne temperature dependence of reaction // enthalpies // Checklist of key ideas Further reading Exercises Problems // 3. State functions and exact differentials // 3.1 State functions // 3.2 // The temperature dependence of the enthalpy // 3.3 The relation between Cv and ? // Checklist of key ideas Further reading // Exercises // Problems // 4 The Second Law: the concepts // The direction of spontaneous change // 4.1 The dispersal of energy // 4.2 Entropy // 4.3 Entropy changes accompanying specific processes // 4.4 The Third Law of thermodynamics // 4.5 Reaching very low temperatures // Concentrating on the system // 4.6 The Helmholtz and Gibbs energies // 4.7 Standard molar Gibbs energies // Checklist of key ideas Further reading // Exercises // Problems // 5 The Second Law: the machinery // Combining the First and Second Laws // 5.1 Properties of the internal energy // 5.2 Properties of the Gibbs energy // 5.3 The chemical potential of a pure substance 132 // Real gases: the fugacity 132 // 5.4 The definition of fugacity 133 // 5.5 Standard states of real gases 133 //
5.6 The relation between fugacity and pressure 133 // Checklist of key ideas Further reading // Exercises // Problems // Physical transformations of pure substances // Phase diagrams // The stabilities of phases Phase boundaries // 6.3 Three typical phase diagrams // Phase stability and phase transitions 145 // 6.4 The thermodynamic criterion of equilibrium 145 // 6.5 The dependence of stability on the conditions 146 // 6.6 The location of phase boundaries 150 // 6.7 The Ehrenfest classification of phase transitions 152 // The physical liquid surface 154 // 6.8 Surface tension 154 // 6.9 Curved surfaces 155 // 6.10 Capillary action 157 // Checklist of key ideas 159 // Further reading 159 // Exercises 160 // Problems 161 // 7 Simple mixtures 163 // The thermodynamic description of mixtures 163 // 7.1 Partial molar quantities 164 // 7.2 The thermodynamics of mixing 169 // 7.3 The chemical potentials of liquids 171 // The properties of solutions 176 // 7.4 Liquid mixtures 176 // 7.5 Colligative properties 177 // Activities 182 // 7.6 The solvent activity 182 // 7.7 The solute activity 183 // Checklist of key ideas 186 // Further reading 187 // Exercises 187 // Problems 189 // 8 Phase diagrams 191 // Phases, components, and degrees of freedom 191 // 8.1 Definitions 192 // 8.2 The phase rule 193 // Two-component systems 195 // 8.3 Vapour pressure diagrams 195 // 8.4 Temperature-composition diagrams 199 // 8.5 Liquid-liquid phase diagrams 201 // 8.6 Liquid-solid phase diagrams 204 // 8.7 Ultrapurity and controlled impurity 207 // Checklist of key ideas 208 // Further reading 208 // Exercises 209 // Problems 212 // 9 Chemical equilibrium 215 // Spontaneous chemical reactions 215 // 9.1 The Gibbs energy minimum 215 // The response of equilibria to the conditions 222 // 9.2 How equilibria respond to pressure 223 // 9.3 The response of equilibria to temperature 224 //
Applications to selected systems 227 // 9.4 The extraction of metals from their oxides 227 9.5 // Acids and bases 229 // 9.6 Biological activity: the thermodynamics of // ATP 235 // Checklist of key ideas 238 // Further reading 238 // Exercises 239 // Problems 241 // 10 Equilibrium electrochemistry 243 // The thermodynamic properties of ions in solution 243 // 10.1 Thermodynamic functions of formation 244 // 10.2 Ion activities 248 // Electrochemical cells 253 // 10.3 Half-reactions and electrodes 254 // 10.4 Varieties of cells 256 // 10.5 Standard potentials 261 // Applications of standard potentials 265 // 10.6 The electrochemical series 265 // 10.7 Solubility constants 266 // 10.8 The measurement of pH and pA’ 267 // 10.9 Thermodynamic functions from cell // potential measurements 268 // Checklist of key ideas 271 // Further reading 271 // Exercises 272 // Problems 274 // MicroProjects 1 278 // Part 2: Structure 283 // 11 Quantum theory: introduction and principles 285 // The origins of quantum mechanics 285 // 11.1 The failures of classical physics 286 // 11.2 Wave-particle duality 290 // The dynamics of microscopic systems 294 // 11.3 The Schrödinger equation 294 // 11.4 The Born interpretation of the wavefunction 296 // Quantum mechanical principles 299 // 11.5 The information in a wavefunction 299 // 11.6 The uncertainty principle 306 // Checklist of key ideas 308 // Further reading 309 // Exercises 309 // Problems 310 // 12 Quantum theory: techniques and applications // Translational motion // 12.1 A particle in a box // 12.2 Motion in two dimensions // 12.3 Tunnelling // Vibrational motion // 12.4 The energy levels // 12.5 The wavefunctions // Rotational motion // 12.6 Rotation in two dimensions // 12.7 Rotation in three dimensions // 12.8 Spin // Checklist of key ideas Further reading Exercises Problems //
13 Atomic structure and atomic spectra // The structure and spectra of hydrogenic atoms // 13.1 The structure of hydrogenic atoms // 13.2 Atomic orbitals and their energies // 13.3 Spectroscopic transitions and selection rules // The structures of many-electron atoms // 13.4 The orbital approximation // 13.5 Self-consistent field orbitals // The spectra of complex atoms // Quantum defects and ionization limits Singlet and triplet states Spin-orbit coupling Term symbols and selection rules The effect of magnetic fields // Checklist of key ideas Further reading Exercises Problems // - Molecular structure // ~ne Born-Oppenheimer approximation valence-bond theory // ’ - ’ The hydrogen molecule // - 1 Homonuclear diatomic molecules // - 3 Polyatomic molecules // Molecular orbital theory // ne hydrogen molCeule-ion ?e structures of diatomic molecules // Molecular orbitals for polyatomic systems 410 // ...ore about notation -eteronuclear diatomic molecules // 14.8 Walsh diagrams // 14.9 The Hückel approximation // 14.10 The band theory of solids // Checklist of key ideas // Further reading // Exercises // Problems // 15 Molecular symmetry // The symmetry elements of objects // Operations and symmetry elements The symmetry classification of molecules Some immediate consequences of symmetry // Character tables // 15.4 Character tables and symmetry labels // 15.5 Vanishing integrals and orbital overlap // 15.6 Vanishing integrals and selection rules // Checklist of key ideas // Further reading // Exercises // Problems // 16 Spectroscopy 1: rotational and vibrational spectra // General features of spectroscopy // 16.1 Experimental techniques // 16.2 The intensities of spectral lines // 16.3 Linewidths // Pure rotation spectra // 16.4 Moments of inertia // 16.5 The rotational energy levels // 16.6 Rotational transitions // 16.7 Rotational Raman spectra //
16.8 Nuclear statistics and rotational states // The vibrations of diatomic molecules // Molecular vibrations // Selection rules // Anharmonicity // Vibration-rotation spectra // Vibrational Raman spectra of diatomic molecules // The vibrations of polyatomic molecules // Normal modes // The vibrational spectra of polyatomic molecules // Vibrational Raman spectra of polyatomic molecules // Checklist of key ideas // Further reading // Exercises // Problems // 17 Spectroscopy 2: electronic transitions // The characteristics of electronic transitions // 17.1 The vibrational structure // 17.2 Specific types of transitions 497 // 17.3 Fluorescence and phosphorescence // 17.4 Dissociation and predissociation // Lasers // 17.5 General principles of laser action // 17.6 Practical lasers // 17.7 Applications of lasers in chemistry // Photoelectron spectroscopy // The technique // Ultraviolet photoelectron spectroscopy // 17.10 X-ray photoelectron spectroscopy // Checklist of key ideas // Further reading // Exercises // Problems // 18 Spectroscopy 3: magnetic resonance Nuclear magnetic resonance // Nuclear magnetic moments // The energies of nuclei in magnetic fields // The chemical shift // 18.4 The fine structure // Pulse techniques in NMR // The magnetization vector Linewidths and rate processes The nuclear Overhauser effect Two-dimensional NMR // 18.9 Solid-state NMR // Electron spin resonance // 18.10 Theg-value // 18.11 Hyperfine structure // Checklist of key ideas // Further reading // Exercises // Problems // The distribution of molecular states // 19.1 Configurations and weights // 19.2 The molecular partition function // The internal energy and the entropy // 19.3 The internal energy // 19.4 The statistical entropy // The fates of electronically excited states 503 // 19 Statistical thermodynamics: the concepts 567 // The canonical partition function 582 //
19.5 The canonical ensemble 583 // 19.6 The thermodynamic information in the partition function 584 // 19.7 Independent molecules 585 // Checklist of key ideas 588 // Further reading 588 // Exercises 588 // Problems 589 // 20 Statistical thermodynamics: the machinery 593 // Fundamental relations // 20.1 The thermodynamic functions // 20.2 The molecular partition function // Using statistical thermodynamics // Mean energies /// Heat capacities // Equations of state // Residual entropies // Equilibrium constants // Checklist of key ideas // Further reading // Exercises // Problems // 21 Diffraction techniques Crystal structure // 21.1 Lattices and unit cells // 21.2 The identification of lattice planes // X-ray diffraction // Bragg’s law // The powder method // Single-crystal X-ray diffraction // Information from X-ray analysis // 21.6 The packing of identical spheres: crystals // 21.7 Ionic crystals // 21.8 Absolute configurations // 21.9 Neutron and electron diffraction metal // 21.10 Neutron diffraction Electron diffraction // Checklist of key ideas // Further reading // Exercises // Problems // 22 The electric and magnetic properties of molecules // Electric properties // 22.1 Permanent and induced electric dipole moments // 22.2 Refractive index // Intermolecular forces // 22.3 Interactions between dipoles // 22.4 Repulsive and total interactions // 22.5 Molecular interactions in beams // Magnetic properties // 22.6 Magnetic susceptibility // 22.7 The permanent magnetic moment // 22.8 Induced magnetic moments // Checklist of key ideas Further reading Exercises Problems // 23 Macromolecules and colloids // Size and shape // Mean molar masses // Colligative properties // Sedimentation // Viscosity // Light scattering // Conformation and configuration // 23.6 Random coils // 23.7 Helices and sheets // 23.8 Higher-order structures // Colloids and surfactants //
23.9 The properties of colloids // 23.10 Surface films // Checklist of key ideas // Further reading // Exercises // Problems // MicroProjects 2 // Part 3: Change // 24 Molecules in motion // Molecular motion in gases // 24.1 Collisions with walls and surfaces // The rate of effusion // Migration down gradients // Transport properties of a perfect gas // Motion in liquids // 24.5 The structures of liquids // 24.6 Molecular motion in liquids // 24.7 The conductivities of electrolyte solutions // 24.8 The mobilities of ions // 24.9 Conductivities and ion-ion interactions // Diffusion // 24.10 The thermodynamic view // 24.11 The diffusion equation // 24.12 Diffusion probabilities 753 // 24.13 The statistical view 754 // Checklist of key ideas 755 // Further reading 756 // Exercises 757 // Problems 759 // 25 The rates of chemical reactions 761 // Empirical chemical kinetics 761 // 25.1 Experimental techniques 762 // 25.2 The rates of reactions 763 // 25.3 Integrated rate laws 767 // 25.4 Reactions approaching equilibrium 771 // 25.5 The temperature dependence of reaction / rates 775 // Accounting for the rate laws 777 // 25.6 Elementary reactions 777 // 25.7 Consecutive elementary reactions 778 // 25.8 Unimolecular reactions 784 // Checklist of key ideas 787 // Further reading 787 // Exercises 788 // Problems 789 // 26 The kinetics of complex reactions 793 // Chain reactions 793 // 26.1 The structure of chain reactions 793 // 26.2 Explosions 797 // 26.3 Photochemical reactions 799 // Polymerization kinetics 802 // 26.4 Chain polymerization 802 // 26.5 Stepwise polymerization 805 // Catalysis and oscillation 807 // 26.6 Homogeneous catalysis 807 // 26.7 Autocatalysis 808 // 26.8 Oscillating reactions 809 // 26.9 Chemical chaos 813 // Checklist of key ideas 813 // Further reading 814 // Exercises 815 //  Problems 816 //
27 Molecular reaction dynamics 819 // Reactive encounters 819 // 27.1 Collision theory 820 // 27.2 Diffusion-controlled reactions 825 // 27.3 The material-balanee equation 828 // Activated complex theory 830 // 27.4 The reaction coordinate and the transition state 830 // 27.5 The Eyring equation 830 // 27.6 Thermodynamic aspects 834 // The dynamics of molecular collisions 837 // 27.7 Reactive collisions 837 // 27.8 Potential energy surfaces 838 // 27.9 Some results from experiments and calculations 839 // Checklist of key ideas // Further reading 844 // Exercises 844 // Problems 846 // 28. Processes at solid surfaces 849 // The growth and structure of solid surfaces 849 // 28.1 Surface growth 849 // 28.2 Surface composition 851 // The extent of adsorption 857 // 28.3 Physisorption and chemisorption 857 // 28.4 Adsorption isotherms // 28.5 The rates of surface processes // Catalytic activity at surfaces 866 // 4 Classical mechanics 911 // 28.6 Adsorption and catalysis 866 5 Electrical quantities Data section 915 // 28.7 Examples of catalysis 868 917 // Checklist of key ideas 871 // Further reading 872 // Exercises 873 // Problems 874 // 29. Dynamic electrochemistry 877 // Processes at electrodes 878 // 29.1 The electrical double layer 878 // The rate of charge transfer 880 // Polarization 885 // Electrochemical processes 890 // 29.4 Electrolysis 890 // 29.5 The characteristics of working cells 891 // Power production and corrosion 892 // 29.6 Fuel cells and secondary cells 892 // 29.7 Corrosion 893 // Checklist of key ideas 895 // Further reading 896 // Exercises 896 // Problems 898 MicroProjects 3 900 // Further information 905 // 1 Relations between partial derivatives 905 // 2 Differential equations 907 // 3 Undetermined multipliers 909 // Answers to exercises 955 // Answers to problems 980 // Partial answers to microprojects 996 // Index 998

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC