Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 05.11.2022. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Chichester : John Wiley & Sons, c2007
xxviii, 574 s. ; 25 cm

objednat
ISBN 978-0-470-84294-2 (brož.)
Obsahuje rejstřík
000079613
Preface xix // Preliminary Chapter Guidance to Student xxiii // List of symbols xxv // 1 Concepts and Ideas: Setting the Stage 1 // 1.1 Electrolyte solutions - what are they? // 1.2 Ions - simple charged particles or not? // 1.3 The solvent: structureless or not? 7 // 1.4 The medium: its structure and the effect of ions on this structure 8 // 1.5 How can these ideas help in understanding what might happen when an ion // is put into a solvent? 9 // 1.6 Electros! riction 11 // 1.7 Ideal and non-ideal solutions - what are they? 11 // 1.8 The ideal electrolyte solution 14 // 1.9 The non-ideal electrolyte solution 14 // 1.10 Macroscopic manifestation of non-ideality 15 // 1.11 Species present in solution 17 // 1.12 Formation of ion pairs from free ions 17 // 1.13 Complexes from free ions 21 // 1.14 Complexes from ions and uncharged ligands 21 // 1.15 Chelates from free ions 22 // 1.16 Micelle formation from free ions 22 // 1.17 Measuring the equilibrium constant: general considerations 23 // 1.18 Base-lines for theoretical predictions about the behaviour expected for a solution consisting of free ions only, Dcbye-Hlickel and Fuoss-Onsager theories and the use of Beer’s Law 24 // 1.19 Ultrasonics // 1.20 Possibility that specific experimental methods could distinguish between the various types of associated species // 1.21 Some examples of how chemists could go about inferring the nature of the species present // 2 The Concept of Chemical Equilibrium: An Introduction // 2.1 Irreversible and reversible reactions // 2.2 Composition of equilibrium mixtures, and the approach to equilibrium // 2.3 Meaning of the term ‘position of equilibrium’ and formulation of the equilibrium constant // 2.3.1 Ideal and non-ideal equilibrium expressions // 2.3.2 Prediction of the ideal algebraic form of the equilibrium constant from the stoichiometric equation //
2.4 Equilibrium and the direction of reaction // 2.5 A searching problem // 2.6 The position of equilibrium // 2.7 Other generalisations about equilibrium // 2.8 ? and pA: // 2.9 Qualitative experimental observations on the effect of temperature on the equilibrium constant // 2.10 Qualitative experimental observations on the effect of pressure // on the equilibrium constant, ? // 2.11 Stoichiometric relations // 2.12 A further relation essential to the description of electrolyte solutions - electrical neutrality // 3 Acids and Bases: A First Approach // 3.1 A qualitative description of acid-base equilibria // 3.2 The self ionisation of water // 3.3 Strong and weak acids and bases // 3.4 A more detailed description of acid-base behaviour // 3.5 Ampholytes // 3.6 Other situations where acid/base behaviour appears // 3.7 Formulation of equilibrium constants in acid-base equilibria // 3.8 Magnitudes of equilibrium constants // 3.9 The self ionisation of water // 3.10 Relations between Ka and Kh\\ expressions for an acid and its conjugate base and for a base and its conjugate acid // 3.11 Stoichiometric arguments in equilibria calculations // 3.12 Procedure for calculations on equilibria // 4 Equilibrium Calculations for Acids and Bases 73 // 4.1 Calculations on equilibria: weak acids 74 // 4.2 Some worked examples 80 // 4.3 Calculations on equilibria: weak bases 85 // 4.4 Some illustrative problems 90 // 4.5 Fraction ionised and fraction not ionised for a weak acid; fraction protonated / and fraction not protonated for a weak base 97 // 4.6 Dependence of the fraction ionised on p/ra and pH 98 // 4.7. The effect of dilution on the fraction ionised for weak acids lying roughly in the range: pifa = 4.0 to 10.0 101 // 4.8 Reassessment of the two approximations: a rigorous expression for a weak acid 103 // 4.9 Conjugate acids of weak bases 104 // 4.10 Weak bases 105 //
4.11 Effect of non-ideality 105 // 5 Equilibrium Calculations for Salts and Buffers 107 // 5.1 Aqueous solutions of salts 108 // 5.2 Salts of strong acids/strong bases 108 // 5.3 Salts of weak acids/strong bases 108 // 5.4 Salts of weak bases/strong acids 109 // 5.5 Salts of weak acids/weak bases 117 // 5.6 Buffer solutions 119 // 6 Neutralisation and pH Titration Curves 139 // 6.1 Neutralisation // 6.2 pH titration curves // 6.3 Interpretation of pH titration curves // 6.4 Polybasic acids // 6.5 pH titrations of dibasic acids: the calculations 161 // 6.6 Tribasic acids 166 // 6.7 Ampholytes 168 // 7 Ion Pairing, Complex Formation and Solubilities 177 // 7.1 Ion pair formation // 7.2 Complex formation 184 // 7.3 Solubilities of sparingly soluble salts 195 // 8 Practical Applications of Thermodynamics for Electrolyte Solutions 215 // 8.1 The first law of thermodynamics 216 // 8.2 The enthalpy, H 217 // 8.3 The reversible process 217 // 8.4 The second law of thermodynamics 217 // 8.5 Relations between w and thermodynamic quantities 218 // 8.6 Some other definitions of important thermodynamic functions 218 // 8.7 A very important equation which can now be derived 218 // 8.8 Relation of emfs to thermodynamic quantities 219 // 8.9 The thermodynamic criterion of equilibrium 220 // 8.10 Some further definitions: standard states and standard values 221 // 8.11 The chemical potential of a substance 221 // 8.12 Criterion of equilibrium in terms of chemical potentials 222 // 8.13 Chemical potentials for solids, liquids, gases and solutes 223 // 8.14 Use of the thermodynamic criterion of equilibrium in the derivation / of the algebraic form of the equilibrium constant 224 // 8.15 The temperature dependence of ?# 230 // 8.16 The dependence of the equilibrium constant, K. on temperature 231 // 8.17 The microscopic statistical interpretation of entropy 236 //
8.18 Dependence of ? on pressure 237 // 8.19 Dependence of &G° on temperature 242 // 8.20 Dependence of AS9 on temperature 242 // 8.21 The non-ideal case 244 // 8.22 Chemical potentials and mean activity coefficients 247 // 8.23 A generalisation 251 // 8.24 Corrections for non-ideality for experimental equilibrium constants 258 // 8.25 Some specific examples of the dependence of the equilibrium constant on ionic strength 263 // 8.26 Graphical corrections for non-ideality 270 // 8.27 Comparison of non-graphical and graphical methods of correcting for non-ideality 270 // 8.28 Dependence of fraction ionised and fractiion protonated on ionic strength 271 // 8.29 Thermodynamic quantities and the effect of non-ideality 271 // 9 Electrochemical Cells and EMFs 273 // 9.1 Chemical aspects of the passage of an electric current through a conducting medium 274 // 9.2 Electrolysis 275 // 9.3 Electrochemical cells 280 // 9.4 Some examples of electrodes used in electrochemical cells // 9.5 Combination of electrodes to make an electrochemical cell // 9.6 Conventions for writing down the electrochemical cell // 9.6.1 Use of a voltmeter to determine the polarity of the electrodes // 9.7 One very important point: cells corresponding to a ‘net chemical reaction’ // 9.8 Liquid junctions in electrochemical cells // 9.9 Experimental determination of the direction of flow of the electrons, and measurement of the potential difference // 9.10 Electrode potentials // 9.11 Standard electrode potentials // 9.12 Potential difference, electrical work done and AG for the cell reaction // 9.13 AG for the cell process: the Nemst equation // 9.14 Methods of expressing concentration // 9/15 Calculation of standard emfs values for cells and AG values for reactions // 9.16 Determination of pH // 9.17 Determination of equilibrium constants for reactions where ? is either very large or very small //
9.18 Use of concentration cells // 9.19 ‘Concealed’ concentration cells and similar cells // 9.20 Determination of equilibrium constants and pK values for reactions which are not directly that for the cell reaction // 9.21 Use of concentration cells with and without liquid junctions in the determination of transport numbers 343 // 10 Concepts and Theory of Non-ideality 349 // 10.1 Evidence for non-ideality in electrolyte solutions 350 // 10.2 The problem theoretically 351 // 10.3 Features of the simple Debye-Hückel model 351 // 10.4 Aspects of electrostatics which are necessary for an understanding of the procedures used in the Debye-Hiickel theory and conductance theory 353 // 10.5 The ionic atmosphere in more detail 360 // 10.6 Derivation of the Debye-Hückel theory from the simple Debye-Hiickel model 363 // 10.7 The Debye-Hückel limiting law 380 // 10.8 Shortcomings of the Debye-Hückel model 382 // and are unpolarisable 383 // 10.9 Shortcomings in the mathematical derivation of the theory 384 // 10.10 Modifications and further developments of the theory 385 // 10.11 Evidence for ion association from Debye-Hückel plots 391 // 10.12 The Bjermm theory of ion association 393 // 10.13 Extensions to higher concentrations 401 // 10.14 Modem developments in electrolyte theory 402 // 10.15 Computer simulations 402 // 10.16 Further developments to the Debye-Hiickel theory 404 // 10.17 Statistical mechanics and distribution functions 409 // 10.18 Application of distribution functions to the determination of activity coefficients due to Kirkwood; Yvon; Born and Green; and Bogolyubov 414 // 10.19 A few examples of results from distribution functions 417 // 10.20 4Bom-Oppenheimer level’models 419 // 10.21 Lattice calculations for concentrated solutions 419 //
11 Conductance: The Ideal Case 421 // 11.1 Aspects of physics relevant to the experimental study of conductance in solution 422 // 11.2 Experimental measurement of the conductivity of a solution 425 // 11.3 Corrections to the observed conductivity to account for the self ionisation of water 427 // 11.4 Conductivities and molar conductivities: the ideal case 428 // 11.5 The physical significance of the molar conductivity, ? 431 // 11.6 Dependence of molar conductivity on concentration for a strong electrolyte: the ideal case 432 // 11.7 Dependence of molar conductivity on concentration for a weak electrolyte: the ideal case 433 // 11.8 Determination of A° 436 // 11.9 Simultaneous determination of ? and ?0 438 // 11.10 Problems when an acid or base is so weak that it is never 100% ionised, even in very, very dilute solution 441 // 11.11 Contributions to the conductivity of an electrolyte solution from the cation and the anion of the electrolyte 441 // 11.12 Contributions to the molar conductivity from the individual ions 442 // 11.13 Kohlrausch’s law of independent ionic mobilities 443 // 11.14 Analysis of the use of conductance measurements for determination of pKas for very weak acids and pÄlbs for very weak bases: the basic quantities involved 447 // 11.15 Use of conductance measurements in determining solubility products for sparingly soluble salts 451 // 11.16 Transport numbers 453 // 11.17 Ionic mobilities 457 // 11.18 Abnormal mobility and ionic molar conductivity of H301 (aq) 463 // 11.19 Measurement of transport numbers 464 // 12 Theories of Conductance: The Non-ideal Case for Symmetrical Electrolytes 475 // 12.1 The relaxation effect 476 // 12.2 The electrophoretic effect 480 // 12.3 Conductance equations for strong electrolytes taking non-ideality into consideration: early conductance theory //
12.4 A simple treatment of the derivation of the Debye-Hückel-Onsager equation 1927 for symmetrical electrolytes // 12.5 The Fuoss-Onsager equation 1932 // 12.6 Use of the Debye-Hückel-Onsager equation for symmetrical strong electrolytes which are fully dissociated // 12.7 Electrolytes showing ion pairing and weak electrolytes which are not fully dissociated // 12.8 Empirical extensions to the Debye-Hückel-Onsager 1927 equation // 12.9 Modem conductance theories for symmetrical electrolytes - post 1950 // 12.10 Fuoss-Onsager 1957: Conductance equation for symmetrical electrolytes // 12.11 A simple illustration of the effects of ion association on experimental conductance curves // 12.12 The Fuoss-Onsager equation for associated electrolytes // 12.13 Range of applicability of Fuoss-Onsager 1957 conductance equation for symmetrical electrolytes // 12.14 Limitations of the treatment given by the 1957 Fuoss-Onsager conductance equation for symmetrical electrolytes // 12.15 Manipulation of the 1957 Fuoss-Onsager equation, and later modifications by Fuoss and other workers // 12.16 Conductance studies over a range of relative permittivities // 12.17 Fuoss et al. 1978 and later // 13 Solvation 517 // 13.1 Classification of solutes: a resumé // 13.2 Classification of solvents // 13.3 Solvent structure // 13.4 The experi menial study of the structure of water // 13.5 Diffraction studies // 13.6 The theoretical approach to the radial distribution function for a liquid // 13.7 Aqueous solutions of electrolytes // 13.8 Terms used in describing hydration // 13.9 Traditional methods for measuring solvation numbers // 13.10 Modem techniques for studying hydration: NMR // 13.11. Modem techniques of studying hydration: neutron and X-ray diffraction // 13.12 Modem techniques of studying solvation: AXD diffraction and EXAFS //
13.13 Modern techniques of studying solvation: computer simulations // 13.14 Cautionary remarks on the significance of the numerical values of solvation numbers // 13.15 Sizes of ions // 13.16 A first model of solvation - the three region model for aqueous electrolyte solutions // 13.17 Volume changes on solvation // 13.18 Viscosity data // 13.19 Concluding comment // 13.20 Determination of AG5Ldralion // 13.21 Determination of ... // 13.22 Compilation of entropies of hydration from AGhydration and A?hydration // 13.23 Thermodynamic transfer functions // 13.24 Solvation of non-polar and apolar molecules - hydrophobic effects // 13.25 Experimental techniques for studying hydrophobic hydration // 13.26 Hydrophobic hydration for large charged ions // 13.27 Hydrophobic interaction // 13.28 Computer simulations of the hydrophobic effect // Subject Matter of Worked Problems 561 // Index 563

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC