Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 16.12.2017. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
(2) Půjčeno:2x 
BK
Champaign, IL : Human Kinetics, c2002
xvii, 653 s. : il., grafy ; 24 cm

objednat
ISBN 0-7360-3778-0 (váz.) ISBN !978-0-7360-3778-5 (chyb.)
Obsahuje tabulky, glosář
Obsahuje bibliografie a rejstřík
000129125
Contents // Preface xi // Acknowledgments xiii Notation and Conventions xv // Chapter 1 // External Contact Forces 1 // 1.1 Forces and Couples 3 // 1.1.1 Generalized Contact Force and Its Rectangular Components 3 // 1.1.1.1 Orthogonal Components of a Force 4 // 1.1.1.2 Orthogonal Components of a Moment of Force 7 // 1.1.1.2.1 Moment of Force About a Point 7 // 1.1.1.2.2 Moment of Force About an Axis 13 // 1.1.2 Couples 18 // 1.1.3 Transformation of Forces and Couples 21 // 1.1.4 Replacement of a Given Force by a Force and a Couple 22 // 1.1.5 Replacement of a Given Force and Couple // by Another Force and Couple: Invariants in Statics 24 // 1.1.6 Equivalent Force-Couple Systems: Varignon’s Theorem 25 // 1.1.7 Wrenches 29 // 1.1.8 Wrenches and Helical Axes 32 // 1.1.9 Interaction With the Support 37 // 1.1.9.1 Basic Mechanics of Force Platforms 38 // 1.1.9.2 Wrench Representation of the Ground Reaction Force 43 // 1.1.9.3 Center of Pressure and Contact Pressure 46 // 1.1.9.4 Gross Mechanical Effects of the Ground Reaction Force: Interplay of the Internal and External Forces 48 // 1.1.9.4.1 Linear Acceleration 52 // 1.1.9.4.2 Angular Acceleration 59 // 1.1.9.4.3 impact Effects in Landing 63 // 1.1.10 Forces in Grasping 65 // 1.1.10.1 Two-Point Contacts 70 // 1.1.10.2 PlUcker’s Coordinates 71 // 1.1.10.3 Wrenches in Pliicker’s Coordinates 72 // 1.1.10.4 Multifinger Contacts: Grip Matrices 75 // 1.2 Friction Forces and Air Resistance 75 // 1.2.1 Friction Angle and Friction Cone
76 // 1.2.2 Friction Forces in Human Movement 81 // 1.2.2.1 Walking and Running 81 // 1.2.2.2 Winter Sports: Skating, Skiing, Bobsledding 86 // iv // Contents v // 1.2.3 Air Resistance 88 // 1.3 Local Biological Effects of Contact Forces 90 // 1.3.1 Compression Forces 90 // 1.3.2 Shear Forces and Skin Friction 94 // 1.3.2.1 Shear Forces in Sitting 94 // 1.3.2.2 Skin Rubbing 96 // 1.3.2.3 Friction Forces in Grasping 99 // 1.4 Summary 102 // 1.5 Questions for Review 104 // 1.6 Bibliography 105 // Chapter 2 // Statics of Multilink Serial Chains: // Transformation Analysis 117 // 2.1 Torque and Force Actuators at Revolute Joints 120 // 2.1.1 Joint Torques at Joints Served by One-Joint Muscles 121 // 2.1.2 Joint Torques at Joints Served by Two-Joint Muscles 123 // 2.2 Transformation Analysis 126 // 2.2.1 Link Isolation 127 // 2.2.1.1 Method 127 // 2.2.1.2 Equilibrating Torques in a Planar Two-Link Chain 133 // 2.2.2 A General Relationship Between End Force // and Joint Moments: The Jacobian Method 135 // 2.2.3 Relationships Between End Force and // Joint Torque for Planar Kinematic Chains 137 // 2.2.3.1 Two-Link Chain 137 // 2.2.3.2 Three-Link Chain 139 // 2.3 Control of External Contact Forces 143 // 2.3.1 Two-Link Chains 145 // 2.3.2 Three-Link Chains 153 // 2.3.3 Force Ellipsoids 161 // 2.3.4 Chains With Holonomic Constraints 167 // 2.3.5 Preferred Directions for the Exertion of Endpoint Forces 172 // 2.3.6 Exertion of Maximal Force: Limiting Joints 175 // 2.3.7 On the Direct Problem
of Statics: // Motor Redundancy and Motor Overdeterminacy 178 // 2.4 Duality of Statics and Kinematics: Null Spaces 182 // 2.5 Summary 189 // 2.6 Questions for Review 191 // vi Contents // 2.7 Bibliography 193 // Chapter 3 // Statics of Multilink Chains: Stability of Equilibrium 199 // 3.1 Stiffness of Passive and Active Objects 206 // 3.2 Apparent Endpoint Stiffness 210 // 3.2.1 Matrices of Endpoint Stiffness 210 // 3.2.2 Vector Field Representation 213 // 3.2.3 The Stiffness Ellipse and the Principal // Transformation of the Endpoint Stiffness Matrix 216 // 3.2.4 Potential Functions of Kinematic Chains 219 // 3.3 Apparent Joint Stiffness 222 // 3.4 Transformation Analysis 223 // 3.4.1 Apparent Endpoint Stiffness Versus Joint Stiffness 223 // 3.4.2 Muscle Jacobian: Apparent Joint Stiffness // Versus Muscle Stiffness 225 // 3.4.3 Factors Influencing Apparent Endpoint Stiffness 228 // 3.4.4 Apparent Stiffness of the Human Arm // During Posture Maintenance 231 // 3.5 Why Is It So Difficult to Determine Joint Stiffness? 234 // 3.5.1 Mechanical Factors 234 // 3.5.2 Physiological Factors 237 // 3.6 Stiffness in Motor Control Models 237 // 3.6.1 Mechanical Models and Mechanical Analogies 238 // 3.6.2 The Equilibrium-Point Hypothesis 241 // 3.6.2.1 Control of Muscle Length and Force 242 // 3.6.2.2 Control of Joint Angle and Torque 244 // 3.6.2.3 Virtual Trajectories and Their Reconstruction 245 // 3.6.2.4 Rambling-Trembling Hypothesis 247 // 3.7 Summary 251 // 3.8 Questions for Review
253 // 3.9 Bibliography 254 // Chapter 4 // Inertial Properties of the Human Body 265 // 4.1 Basic Mechanics Theory 266 // 4.1.1 Center of Mass 267 // 4.1.2 Moment of Inertia and Radius of Gyration 269 // 4.1.3 Products of Inertia 275 // Contents vii // 4.1.4 Moments of Inertia With Respect // to Parallel and Rotated Axes 276 // 4.1.4.1 Parallel Axis Theorem 277 // 4.1.4.2 Moment of Inertia About a Rotated Axis 279 // 4.1.5 Tensor of Inertia and Principal Moments of Inertia 280 // 4.1.6 Tensors of Inertia With Respect to Remote Axes 286 // 4.2 Inertial Properties of the Entire Human Body 287 // 4.2.1 Total Center of Mass 287 // 4.2.2 Moments of Inertia 287 // 4.2.2.1 Moments of Inertia in a Standing Posture 288 // 4.2.2.2 Moments of Inertia in Arbitrary Postures 291 // 4.3 Inertial Properties of Body Parts 294 // 4.3.1 Segmentation 294 // 4.3.2 Principal Mechanical Axes // Versus Principal Anatomic Axes 298 // 4.3.3 Some Representative Data 301 // 4.3.4 Factors Influencing Inertial Properties // of Human Body Segments 302 // 4.3.4.1 Body Density 303 // 4.3.4.2 Total Body Mass 308 // 4.3.5 Inertial Properties of the Trunk 313 // 4.4 Subject-Specific Inertial Characteristics 316 // 4.4.1 Geometric Modeling 318 // 4.4.2 Geometric Scaling: Isometry and Allometry 321 // 4.4.3 Regression Equations 323 // 4.4.4 Combined Methods (Nonlinear Regression Equations) 324 // 4.5 Control of Body Inertia in Human Movement 327 // 4.5.1 Moments and Products of Inertia 328 // 4.5.2 Inertia Matrix
of the Chain 328 // 4.5.3 Endpoint Inertia 332 // 4.5.4 Apparent Mass During Impacts and Striking 336 // 4.6 Summary 345 // 4.7 Questions for Review 347 // 4.8 Bibliography 349 // Chapter 5 // Joint Torques and Forces: // The Inverse Problem of Dynamics 365 // 5.1 Basic Dynamic Equations 368 // 5.2 Inverse Dynamics of Simple Planar Chains 371 // viii Contents // 5.2.1 Single-Link Motion 371 // 5.2.2 Planar Two-Link Chain 374 // 5.2.2.1 Forces During Motion of a Two-Link Chain 375 // 5.2.2.2 Dynamic Equations in the Closed Form 377 // 5.2.2.3 Dynamic Coefficients and Interactive Effects 381 // 5.2.3 Three-Link Planar Chains 385 // 5.3 Movement in Three Dimensions 388 // 5.3.1 Motion of a Rigid Body in Three Dimensions 389 // 5.3.1.1 Time Derivative of a Vector // With Respect to a Rotating Frame 390 // 5.3.1.2 Motion of a Rigid Body About the Center of Mass 391 // 5.3.2 Recursive Newton-Euler Formulation 394 // 5.3.2.1 The Newton-Euler Equations 394 // 5.3.2.2 The Recursive Procedure 395 // 5.3.2.3 External Contact Forces 398 // 5.3.3 Lagrangian Formulation 402 // 5.3.3.1 Kinetic Energy of Individual Links 405 // 5.3.3.2 Kinetic Energy of the Entire Body 406 // 5.3.3.3 Deriving the Lagrangian Equations 407 // 5.3.3.4 Lagrangian Equations for a Two-Link Planar Chain 408 // 5.4 Joint Torques and Joint Forces in Human Motion 410 // 5.4.1 Interpreting Joint Torques 410 // 5.4.1.1 Joint Torques and Joint Motion 410 // 5.4.1.2 Passive Mechanical Resistance at Joints 415 // 5.4.1.3 Scaling
Joint Torques With Movement Speed 415 // 5.4.2 Interpreting Joint Forces 415 // 5.4.2.1 Origin of Joint Forces 417 // 5.4.2.2 Joint Forces and Bone-on-Bone Forces 421 // 5.4.2.3 Effects of Joint Forces: Whiplike Movement 424 // 5.4.3 Interactive Torques and Forces 425 // 5.4.3.1 Partitioning the Joint Torques 428 // 5.4.3.2 Contribution of Interactive Torques and Forces 430 // 5.5 Summary 433 // 5.6 Questions for Review 435 // 5.7 Bibliography 436 // Chapter 6 // Mechanical Work and Energy in Human Movement 455 // 6.1 The Concept of Work 461 // 6.1.1 Work of a Force 462 // 6.1.1.1 Workless Forces 462 // Contents ix // 6.1.1.2 Invariance of Work 464 // 6.1.1.3 The Law of Conservation // of Energy and Conservative Systems 465 // 6.1.1.4 Energy Exchange During Positive and Negative Work of a Force 466 // 6.1.2 Work Done on a Body 469 // 6.2 Work at a Joint and Work on a Body Segment 472 // 6.2.1 From Muscle Power to Joint Power 472 // 6.2.2 The Work at a Joint 474 // 6.2.2.1 Joint Power and Joint Work 474 // 6.2.2.2 Energy Transfer Between Adjacent Segments 477 // 6.2.2.3 Energy Transfer Between Nonadjacent Segments 481 // 6.2.2.4 Work of a Joint Force 483 // 6.2.3 Power and Work on a Body Segment 487 // 6.2.3.1 Computation of Power and Work 487 // 6.2.3.2 Conservation of Energy in One-Link Motion: // Pendulum-Like Motion 492 // 6.2.3.3 Negative Change in the Body’s Mechanical Energy Versus the Negative Work of Joint Torques 496 // 6.3 Energy, Work, and Power in Multilink Kinematic
Chains 499 // 6.3.1 Work Done on the System: Energy Balance Equations 500 // 6.3.2 Work and Power of Sources of Mechanical Energy 504 // 6.3.2.1 Introductory Examples 504 // 6.3.2.2 Mechanical Energy Expenditure 507 // 6.3.2.3 Energy Compensation 508 // 6.3.2.3.1 Intercompensation of Sources 509 // 6.3.2.3.2 Compensation During Time (Recuperation) 510 // 6.3.3 Main Models 513 // 6.3.3.1 Energy Expenditure of Joint Torques (Source Approach) 513 // 6.3.3.2 Energy Expenditure to Move Body Links (Fraction Approach) 516 // 6.3.3.3 The CoM Model 518 // 6.3.3.3.1 Energy of the CoM 522 // 6.3.3.3.2 Work of the Effective Force 527 // 6.3.3.3.3 Rate of Energy of the CoM and Rate of Total Energy of the Body 530 // 6.3.3.4 A General Overview of the Models 533 // 6.4 Minimizing the Energy Expenditure for Motion 535 // 6.4.1 Energy Expended for Motion 536 // 6.4.1.1 Worklike Measures and Movement Economy 536 // 6.4.1.2 Work of Muscle Forces 538 // 6.4.2 Energy-Saving Mechanisms 540 // x Contents // 6.4.3 Does the Central Nervous System // Minimize the Energy Expenditure for Motion? 542 // 6.5 Summary 542 // 6.6 Questions for Review 546 // 6.7 Bibliography 547 // Appendix 1 Inertial Properties of Cadavers 575 // Appendix 2 Inertial Properties Measured in Living Subjects 583 // Appendix 3 Geometric Modeling of Human Body Segments 613 // Glossary 617 // Index 641 // About the Author 653

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC