Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 10.02.2018. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Singapore : World Scientific, [2017]
2 svazky : ilustrace (některé barevné) ; 25 cm

objednat
ISBN 978-981-4635-12-7 (soubor)
ISBN 978-981-4678-48-3 (díl 1 ; vázáno)
ISBN 978-981-4678-49-0 (díl 2 ; vázáno)
Obsahuje bibliografie a rejstříky
volume 1. xxxii, 630, xli stran, 16 nečíslovaných stran obrazových příloh -- volume 2. xxxii, 545, xli stran, 16 nečíslovaných stran obrazových příloh
001419602
Contents // Volume 1 // Foreword v // Color plates I-CPI // Part I. Genesis, Solutions and Energy j_l // 1. A genesis of special relativity I_3 // Valérie Messager and Christophe Letellier IJMPD 24 (2015) 1530024 // 1. Introduction I_3 // 2. The Ether: Prom Celestial Body Motion to Light // Propagation j_5 // 2.1. Its origin I_5 // 2.2. The luminiferous ether I_8 // 3. Galileo’s Composition Law for Velocities 1-11 // 4. Questioning the Nature of Light: Waves // or Corpuscles? I_15 // 5. From Electrodynamics to Light 1-24 // 5.1. Ampere’s law I_24 // 5.2. Maxwell’s electromagnetic waves as light 1-28 // 5.3. Helmholtz’s theory I_32 // 5.4. Hertzs experiments for validating Maxwell’s // theory I_33 // 6. Invariance of the Field Equations from a Frame // to Another One I_37 // 6.1. Hertz’s electrodynamic theory 1-37 // 6.2. Voigt’s wave equation 1-41 // 6.3. Lorentz’s electrodynamical theory 1-42 // 6.4. Larmor’s theory I_50 // 7. Poincare’s Contribution 1-51 // 8. Einstein’s 1905 Contribution 1-72 // 9. Conclusion I_7(3 // Appendices I_77 // A. 1. Fizeau’s experiments 1-77 // xii // Contents // A. 2. Michelson and Morley’s experiments 1-77 // 2. Genesis of general relativity — A concise exposition 1-85 // Wei-Tou Ni // IJMPD 25 (2016) 1630004 // 1. Prelude — Before 1905 1-86 // 2. The Period of Searching for Directions and New // Ingredients: 1905-1910 1-91 // 3. The Period of Various Trial Theories: 1911-1914 1-96 // 4. The Synthesis and Consolidation:
1915-1916 I-100 // 5. Epilogue 1-103 // 3. Schwarzschild and Kerr solutions of Einstein’s field // equation: An Introduction 1-109 // Christian Heinicke and Friederich W. Hehl IJMPD 24 (2015) 1530006 // 1. Prelude 1-109 // 1.1. Newtonian gravity 1-109 // 1.2. Minkowski space 1-114 // 1.2.1. Null coordinates 1-115 // 1.2.2. Penrose diagram 1-115 // 1.3. Einstein’s field equation 1-118 // 2. The Schwarzschild Metric (1916) 1-120 // 2.1. Historical remarks 1-120 // 2.2. Approaching the Schwarzschild metric 1-122 // 2.3. Six classical representations of the // Schwarzschild metric 1-126 // 2.4. The concept of a Schwarzschild black hole 1-126 // 2.4.1. Event horizon 1-128 // 2.4.2. Killing horizon 1-130 // 2.4.3. Surface gravity 1-131 // 2.4.4. Infinite redshift 1-131 // 2.5. Using light rays as coordinate lines 1-131 // 2.5.1. Eddington-Finkelstein coordinates 1-132 // 2.5.2. Kruskal-Szekeres coordinates 1-133 // 2.6. Penrose-Kruskal diagram 1-135 // 2.7. Adding electric charge and the cosmological // constant: Reissner-Nordström 1-136 // 2.8. The interior Schwarzschild solution and the // TOY equation 1-137 // Contents xiii // 3. The Kerr Metric (1963) 1-141 // 3.1. Historical remarks 1-141 // 3.2. Approaching the Kerr metric 1-144 // 3.2.1. Papapetrou line element and vacuum // field equation 1-144 // 3.2.2. Ernst equation (1968) 1-147 // 3.2.3. From Ernst back to Kerr 1-148 // 3.3. Three classical representations of the // Kerr metric 1-149 // 3.4. The concept of a Kerr black
hole 1-151 // 3.4.1. Depicting Kerr geometry 1-152 // 3.5. The ergoregion 1-155 // 3.5.1. Constrained rotation 1-155 // 3.5.2. Rotation of the event horizon 1-156 // 3.5.2. Penrose process and black hole // thermodynamics 1-156 // 3.6. Beyond the horizons 1-157 // 3.6.1. Using light rays as coordinate lines 1-158 // 3.7. Penrose-Carter diagram and Cauchy horizon 1-160 // 3.8. Gravitoelectromagnetism, multipole moments 1-161 // 3.8.1. Gravitoelectromagnetic field strength 1-163 // 3.8.2. Quadratic invariants 1-165 // 3.8.3. Gravitomagnetic clock effect of // Mashhoon, Cohen et al 1-166 // 3.8.4. Multipole moments: Gravitoelectric // and gravitomagnetic ones 1-167 // 3.9. Adding electric charge and the cosmological // constant: Kerr-Newman metric 1-168 // 3.10. On the uniqueness of the Kerr black hole 1-170 // 3.11. On interior solutions with material sources 1-171 // 4. Kerr Beyond Einstein 1-172 // 4.1. Kerr metric accompanied by a propagating // linear connection 1-172 // 4.2. Kerr metric in higher dimensions and // in string theory 1-174 // Appendix 1-175 // A.l. Exterior calculus and computer algebra 1-175 // xiv // Contents // 4. Gravitational energy for GR and Poincaré // gauge theories: A covariant Hamiltonian approach 1-187 // Chiang-Mei Chen, James Nester and Roh-Suan Tung IJMPD 24 (2015) 1530026 // 1. Introduction 1-188 // 2. Background 1-189 // 2.1. Some brief early history 1-189 // 2.2. From Einstein’s correspondence 1-190 // 2.3. Noether’s contribution 1-192
2.4. Noether’s result 1-193 // 3. The Noether Energy-Momentum Current // Ambiguity 1-194 // 4. Pseudotensors 1-196 // 4.1. Einstein, Klein and superpotentials 1-197 // 4.2. Other GR pseudotensors 1-198 // 4.3. Pseudotensors and the Hamiltonian 1-200 // 5. The Quasi-Local View 1-201 // 6. Currents as Generators 1-201 // 7. Gauge and Geometry 1-202 // 8. Dynamical Spacetime Geometry and the // Hamiltonian 1-203 // 8.1. Pseudotensors and the Hamiltonian 1-204 // 8.2. Some comments 1-204 // 9. Differential Forms 1-204 // 10. Variational Principle for Form Fields 1-206 // 10.1. Hamiltons principle 1-207 // 10.2. Compact representation 1-207 // 11. Some Simple Examples of the Noether Theorems 1-208 // 11.1. Noether’s first theorem: Energy momentum 1-208 // 11.2. Noether’s second theorem: Gauge fields 1-209 // 11.3. Field equations with local gauge theory 1-211 // 12. First-Order Formulation 1-213 // 13. The Hamiltonian and the 3 + 1 Spacetime Split 1-214 // 13.1. Canonical Hamiltonian formalism 1-215 // 13.2. The differential form of the spacetime // decomposition 1-215 // 13.3. Spacetime decomposition of the variational // formalism 1-217 // Contents xv // 14. The Hamiltonian and Its Boundary Term 1-218 // 14.1. The translational Noether current 1-219 // 14.2. The Hamiltonian formulation 1-220 // 14.3. Boundary terms: The boundary condition // and reference 1-221 // 14.4. Covariant-symplectic Hamiltonian // boundary terms 1-222 // 15. Standard Asymptotics 1-223 // 15.1. Spatial
infinity 1-224 // 15.2. Null infinity 1-224 // 15.3. Energy flux 1-225 // 16. Application to Electromagnetism 1-225 // 17. Geometry: Covariant Differential Formulation 1-227 // 17.1. Metric and connection 1-228 // 17.2. Riemann-Cartan geometry 1-229 // 17.3. Regarding geometry and gauge 1-230 // 17.4. On the affine connection and gauge theory 1-230 // 18. Variational Principles for Dynamic Spacetime // Geometry T232 // 18.1. The Lagrangian and its variation 1-232 // 18.2. Local gauge symmetries, Noether currents // and differential identities 1-233 // 18.3. Interpretation of the differential identities 1-238 // 19. First-Order Form and the Hamiltonian 1-240 // 19.1. First-order Lagrangian and local gauge // symmetries 1-240 // 19.2. Generalized Hamiltonian and differential // identities 1-241 // 19.3. General geometric Hamiltonian boundary // terms 1-244 // 19.4. Quasi-local boundary terms 1-245 // 19.5. A preferred choice 1-245 // 19.6. Einstein’s GR 1-246 // 19.7. Preferred boundary term for GR 1-247 // 20. A “Best Matched” Reference 1-248 // 20.1. The choice of reference 1-249 // 20.2. Isometric matching of the 2-surface 1-250 // 20.3. Complete 4D isometric matching 1-251 // xvi // Contents // 20.4. Complete 4D isometric matching 1-251 // 21. Concluding Discussion 1-252 // Part II. Empirical Foundations 1-263 // 5. Equivalence principles, spacetime structure // and the cosmic connection 1-265 // Wei-Tou Ni // IJMPD 25 (2016) 1630002 // 1. Introduction 1-265 // 2. Meaning
of Various Equivalence Principles 1-270 // 2.1. Ancient concepts of inequivalence 1-271 // 2.2. Macroscopic equivalence principles 1-271 // 2.3. Equivalence principles for photons // (wave packets of light) 1-273 // 2.4. Microscopic equivalence principles 1-273 // 2.5. Equivalence principles including gravity // (Strong equivalence principles) 1-276 // 2.6. Inequivalence and interrelations of various // equivalence principles 1-277 // 3. Gravitational Coupling to Electromagnetism and // the Structure of Spacetime 1-278 // 3.1. Premetric electrodynamics as a framework to study gravitational coupling // to electromagnetism 1-278 // 3.2. Wave propagation and the dispersion relation 1-279 // 3.2.1. The condition of vanishing of B(!) and B(2) for all directions of // wave propagation 1-282 // 3.2.2. The condition of (Sk>B(1)=(p>5(1)=0and A(1) = ?(2) // for all directions of wave propagation 1-284 // 3.3. Nonbirefringence condition for the // skewonless case 1-284 // 3.4. Wave propagation and the dispersion // relation in dilaton field and axion field 1-288 // 3.5. No amplification/no attenuation and no polarization rotation constraints // on cosmic dilaton field and cosmic axion field 1-292 // 3.6. Spacetime constitutive relation including // skewons 1-293 // Contents xvii // 3.7. Constitutive tensor from asymmetric metric // and Fresnel equation 1-297 // 3.8. Empirical foundation of the closure relation // for skewonless case 1-300 // 4. From Galileo Equivalence Principle to Einstein
// Equivalence Principle 1-303 // 5. EEP and Universal Metrology 1-305 // 6. Gyrogravitational Ratio 1-307 // 7. An Update of Search for Long Range/Intermediate Range Spin-Spin, Spin-Monopole and // Spin-Cosmos Interactions 1-308 // 8. Prospects 1-309 // 6. Cosmic polarization rotation: An astrophysical test // of fundamental physics 1-317 // Sperello di Serego Alighieri IJMPD 24 (2015) 1530016 // 1. Introduction 1-317 // 2. Impact of CPR on Fundamental Physics 1-318 // 3. Constraints from the Radio Polarization of RGs 1-319 // 4. Constraints from the UV Polarization of RGs 1-320 // 5. Constraints from the Polarization of the // CMB Radiation 1-321 // 6. Other Constraints 1-325 // 7. Discussion 1-326 // 8. Outlook 1-327 // 7. Clock comparison based on laser ranging technologies 1-331 // Etienne Samain IJMPD 24 (2015) 1530021 // 1. Introduction 1-331 // 2. Scientific Objectives 1-335 // 2.1. Time and frequency metrology 1-335 // 2.2. Fundamental physics 1-338 // 2.3. Solar System science 1-340 // 2.4. Solar System navigation based on clock // comparison 1-341 // 3. Time Transfer by Laser Link: T2L2 on Jason-2 1-341 // 3.1. Principle 1-341 // 3.2. Laser station ground segment 1-342 // xviii // Contents // 3.3. Space instrument 1-344 // 3.4. Time equation 1-347 // 3.5. Error budget 1-349 // 3.6. Link budget 1-351 // 3.7. Exploitation 1-352 // 4. One-Way Lunar Laser Link on LRO Spacecraft 1-357 // 5. Prospective 1-361 // 6. Conclusion and Outlook 1-364 // 8. Solar-system tests of
relativistic gravity 1-371 // Wei-Tou Ni // IJMPD 25 (2016) 1630003 // 1. Introduction and Summary 1-371 // 2. Post-Newtonian Approximation, PPN Framework, // Shapiro Time Delay and Light Deflection 1-374 // 2.1. Post-Newtonian approximation 1-375 // 2.2. PPN framework 1-377 // 2.3. Shapiro time delay 1-380 // 2.4. Light deflection 1-381 // 3. Solar System Ephemerides 1-382 // 4. Solar System Tests 1-385 // 5. Outlook On Going and Next-Generation Tests 1-393 // 9. Pulsars and gravity 1-407 // R. N. Manchester IJMPD 24 (2015) 1530018 // 1. Introduction 1-407 // 1.1. Pulsar timing 1-410 // 2. Tests of Relativistic Gravity 1-412 // 2.1. Tests of general relativity with // double-neutron-star systems 1-412 // 2.1.1. The Hulse-Taylor binary, PSR // B1913 +16 1-412 // 2.1.2. PSR B1534 +12 1-415 // 2.1.3. The double pulsar, PSR // J0737 — 3039A/B 1-417 // 2.1.4. Measured post-Keplerian parameters 1-421 // 2.2. Tests of equivalence principles and // alternative theories of gravitation 1-421 // 2.2.1. Limits on PPN parameters 1-423 // Contents xix // 2.2.2. Dipolar gravitational waves and the // constancy of G 1-427 // 2.2.3. General scalar tensor and // scalar-vector-tensor theories 1-429 // 2.3. Future prospects 1-431 // 3. The Quest for Gravitational-Wave Detection 1-432 // 3.1. Pulsar timing arrays 1-432 // 3.2. Nanohertz gravitational-wave sources 1-435 // 3.2.1. Massive black-hole binary systems 1-435 // 3.2.2. Cosmic strings and the early universe 1-439 // 3.2.3. Transient or
burst GW sources 1-440 // 3.3. Pulsar timing arrays and current results 1-443 // 3.3.1. Existing PTAs 1-444 // 3.3.2. Limits on the nanohertz GW // background 1-445 // 3.3.3. Limits on GW emission from // individual black-hole binary systems 1-446 // 3.4. Future prospects 1-450 // 4. Summary and Conclusion 1-452 // Part III. Gravitational Waves 1-459 // 10. Gravitational waves: Classification, methods // of detection, sensitivities, and sources 1-461 // Kazuaki Kuroda, Wei-Tou Ni and Wei-Ping Pan IJMPD 24 (2015) 1530031 // 1. Introduction and Classification 1-461 // 2. GWs in GR 1-464 // 3. Methods of GW Detection, and Their Sensitivities 1-470 // 3.1. Sensitivities 1-471 // 3.2. Very high frequency band (100 kHz-1 THz) and ultrahigh // frequency band (above ITHz) 1-477 // 3.3. High frequency band (10 Hz-100 kHz) 1-478 // 3.4. Doppler tracking of spacecraft (1 //Hz-1 mHz // in the low-frequency band) 1-480 // 3.5. Space interferometers (low-frequency band, lOOnHz-TOOmHz; middle-frequency band, // 100 mHz-10 Hz) 1-481 // 3.6. Very-low-frequency band (300 pHz-100 nHz) 1-486 // 3.7. Ultra-low-frequency band (10fHz-300pHz) 1-488 // Contents // 3.8. Extremely-low (Hubble)-frequency band // (laHz-lOffiz) 1-489 // 4. Sources of GWs 1-491 // 4.1. GWs from compact binaries 1-491 // 4.2. GWs from supernovae 1-492 // 4.3. GWs from massive black holes and their // coevolution with galaxies 1-493 // 4.4. GWs from extreme mass ratio inspirals (EMRIs) 1-495 // 4.5. Primordial/inflationary/relic
GWs 1-495 // 4.6. Very-high-frequency and ultra-high-frequency // GW sources 1-496 // 4.7. Other possible sources 1-496 // 5. Discussion and Outlook 1-497 // 11. Ground-based gravitational-wave detectors 1-505 // Kazuaki Kuroda IJMPD 24 (2015) 1530032 // 1. Introduction to Ground-Based Gravitational-Wave // Detectors 1-505 // 1.1. Gravitational-wave sources 1-506 // 1.1.1. Achieved sensitivities of large projects 1-506 // 1.1.2. Coalescences of binary neutron stars 1-508 // 1.1.3. Coalescences of binary black holes 1-508 // 1.1.4. Supernova explosion 1-509 // 1.1.5. Quasi-normal mode oscillation at the // birth of black hole 1-509 // 1.1.6. Unstable fast rotating neutron star 1-510 // 1.2. Acceleration due to a gravitational wave 1-510 // 1.3. Response of a resonant antenna 1-512 // 1.4. Response of a resonant antenna 1-515 // 1.4.1. Directivity 1-516 // 1.4.1. Positioning 1-518 // 1.5. Comparison of a resonant antenna and // an interferometer 1-519 // 2. Resonant Antennae 1-519 // 2.1. Development of resonant antennae 1-520 // 2.2. Dynamical model of a resonant antenna with // two modes 1-523 // 2.3. Signal-to-noise ratio and noise temperature 1-525 // Contents xxi // 2.4. Comparison of five resonant antennae 1-526 // 3. Interferometers 1-527 // 3.1. First stage against technical noises // in prototype interferometers 1-528 // 3.1.1. 3 m-Garching interferometer 1-528 // 3.1.2. 30 m-Garching interferometer 1-530 // 3.1.3. Glasgow 10 m-Fabry-Perot Michelson // interferometer 1-533
// 3.1.4. Caltech 40 m-Fabry-Perot Michelson // interferometer 1-535 // 3.1.5. ISAS 10 m and 100 m delay-line // interferometer 1-536 // 3.2. Further R&D efforts in the first-generation // detectors 1-536 // 3.2.1. Power recycling 1-537 // 3.2.2. Signal recycling and resonant // side-band extraction 1-538 // 3.3. Fighting with thermal noise of the second stage 1-539 // 3.3.1. Mirror and suspension thermal noise 1-540 // 3.3.2. Thermal noise of optical coating 1-542 // 3.4. Fighting against quantum noises and squeezing 1-543 // 3.4.1. Radiation pressure noise 1-543 // 3.4.2. Squeezing 1-544 // 4. Large Scale Projects 1-546 // 4.1. LIGO project 1-546 // 4.2. Virgo project 1-548 // 4.3. GEO project 1-552 // 4.4. TAMA/CLIO/LCGT(KAGRA) project 1-555 // 4.4.1. TAMA 1-555 // 4.4.2. CLIO 1-558 // 4.4.3. LCGT (KAGRA) 1-561 // 4.4.4. Einstein telescope 1-565 // 5. Summary 1-566 // Appendix A. Thermal Noise 1-567 // A.l. Nyquist theorem 1-567 // A.2. Thermal noise of a harmonic oscillator 1-568 // Appendix B. Modulation 1-569 // Appendix C. Fabry-Perot Interferometer 1-571 // xxii // Contents // C.l. Fabry-Perot cavity 1-571 // C.2. Frequency response of a Fabry Perot Michelson // interferometer 1-572 // Appendix D. Newtonian Noise 1-573 // 12. Gravitational wave detection in space 1-579 // Wei-Tou Ni // IJMPD 25 (2016) 1630001 // 1. Introduction 1-579 // 2. Gravity and Orbit Observations/Experiments // in the Solar System 1-586 // 3. Doppler Tracking of Spacecraft 1-589 // 4. Interferometric
Space Missions 1-591 // 5. Frequency Sensitivity Spectrum 1-596 // 6. Scientific Goals 1-601 // 6.1. Massive black holes and their co-evolution // with galaxies 1-601 // 6.2. Extreme mass ratio inspirals 1-603 // 6.3. Testing relativistic gravity 1-603 // 6.4. Dark energy and cosmology 1-603 // 6.5. Compact binaries 1-604 // 6.6. Relic GWs 1-604 // 7. Basic Orbit Configuration, Angular Resolution // and Multi-Formation Configurations 1-605 // 7.1. Basic LISA-like orbit configuration 1-605 // 7.2. Basic ASTROD orbit configuration 1-607 // 7.3. Angular resolution 1-611 // 7.4. Six/twelve spacecraft formation 1-612 // 8. Orbit Design and Orbit Optimization Using // Ephemerides 1-612 // 8.1. CGC ephemeris 1-613 // 8.2. Numerical orbit design and orbit // optimization for eLISA/NGO 1-614 // 8.3. Orbit optimization for ASTROD-GW 1-616 // 8.3.1. CGC 2.7.1 ephemeris 1-616 // 8.3.2. Initial choice of spacecraft initial // conditions 1-616 // 8.3.3. Method of optimization 1-617 // 9. Deployment of Formation in Earthlike Solar Orbit 1-619 // 10. Time Delay Interferometry 1-619 // Contents xxiii // 11. Payload Concept 1-622 // 12. Outlook 1-624 // Subject Index I // Author Index XIII // Volume 2 // Foreword v // Color plates II-CP1 // Part IV. Cosmology II-1 // 13. General Relativity and Cosmology II-3 // Martin Bucher and Wei-Tou Ni // IJMPD 24 (2015) 1530030 // 14. Cosmic Structure 11-19 // Marc Davis // IJMPD 23 (2014) 1430021 // 1. History of Cosmic Discovery II-19 // 2. Measurement of
the Galaxy Correlation Function 11-22 // 2.1. Before 1980 11-22 // 2.2. After 1980 11-23 // 2.3. Remarkable large-scale structure in simulations II-25 // 2.4. Measurement of the BAG effect 11-26 // 2.5. Further measurements of the power spectrum 11-28 // 2.6. Lyman-a clouds 11-29 // 3. Large Scale Flows 11-31 // 4. Dwarf Galaxies as a Probe of Dark Matter 11-34 // 5. Gravitational Leasing 11-38 // 5.1. Double images 11-38 // 5.2. Bullet cluster 11-38 // 5.3. Substructure of gravitational lenses II-38 // 6. Conclusion 11-40 // 15. Physics of the cosmic microwave background anisotropy 11-43 // Martin Bucher // IJMPD 24 (2015) 1530004 // 1. Observing the Microwave Sky: A Short History // and Observational Overview 11-43 // 2. Brief Thermal History of the Universe 11-54 // xxiv // Contents // 3. Cosmological Perturbation Theory: Describing // a Nearly Perfect Universe Using General Relativity H-58 // 4. Characterizing the Primordial Power Spectrum 11-61 // 5. Recombination, Blackbody Spectrum, and // Spectral Distortions 11-62 // 6. Sachs-Wolfe Formula and More Exact Anisotropy // Calculations 11-63 // 7. What Can We Learn From the CMB Temperature // and Polarization Anisotropies? II-69 // 7.1. Character of primordial perturbations: // Adiabatic growing mode versus field ordering 11-69 // 7.2. Boltzmann hierarchy evolution 11-71 // 7.3. Angular diameter distance 11-76 // 7.4. Integrated Sachs-Wolfe effect 11-77 // 7.5. Reionization 11-78 // 7.6. What we have not mentioned 11-83
8. Gravitational Lensing of the CMB II-84 // 9. CMB Statistics II-86 // 9.1. Gaussianity, non-Gaussianity, and all that II-86 // 9.2. Non-Gaussian alternatives II-92 // 10. Bispectral Non-Gaussianity 11-92 // 11. ? Modes: A New Probe of Inflation 11-94 // 11.1. Suborbital searches for primordial ? modes 11-95 // 11.2. Space based searches for primordial ? modes 11-96 // 12. CMB Anomalies 11-96 // 13. Sunyaev-Zeldovich Effects 11-98 // 14. Experimental Aspects of CMB Observations II-100 // 14.1. Intrinsic photon counting noise: Ideal // detector behavior II-102 // 14.2. CMB detector technology 11-104 // 14.3. Special techniques for polarization II-106 // 15. CMB Statistics Revisited: Dealing with Realistic // Observations II-110 // 16. Galactic Synchrotron Emission 11-112 // 17. Free-Free Emission 11-113 // 18. Thermal Dust Emission H-114 // 19. Dust Polarization and Grain Alignment 11-116 // 19.1. Why do dust grains spin? II-117 // Contents XXV // 19.2. About which axis do dust grains spin? II-118 // 19.3. A stochastic differential equation for L(t) 11-118 // 19.4. Suprathermal rotation 11-119 // 19.5. Dust grain dynamics and the galactic // magnetic field 11-120 // 19.5.1. Origin of a magnetic moment along L II-121 // 19.6. Magnetic precession II-122 // 19.6.1. Barnett dissipation 11-122 // 19.7. Davis-Greenstein magnetic dissipation II-124 // 19.8. Alignment along ? without // Davis-Greenstein dissipation II-125 // 19.9. Radiative torques 11-126 // 19.10. Small dust grains and
anomalous // microwave emission (AME) II-128 // 20. Compact Sources II-130 // 20.1. Radio galaxies 11-131 // 20.2. Infrared galaxies II-132 // 21. Other Effects II-132 // 21.1. Patchy reionization II-132 // 21.2. Molecular lines II-132 // 21.3. Zodiacal emission 11-133 // 22. Extracting the Primordial CMB Anisotropies H-133 // 23. Concluding Remarks 11-134 // 16. SNe la as a cosmological probe II-151 // Xiangcun Meng, Yan Gao and Zhanwen Han IJMPD 24 (2015) 1530029 // 1. Introduction II-151 // 2. SNe la as a Standardizable Distance Candle II-152 // 3. Progenitors of SNe la II-157 // 4. Effect of SN la Populations on Their Brightness 11-160 // 5. SN la’s Role in Cosmology II-163 // 6. Issues and Prospects 11-167 // 17. Gravitational Lensing in Cosmology II-173 // Toshifumi Futamase IJMPD 24 (2015) 1530011 // 1. Introduction and History II-173 // 2. Basic Properties for Lens Equation 11-176 // 2.1. Derivation of the cosmological lens equation II-176 // xxvi // Contents // 2.2. Properties of lens mapping II-179 // 2.3. Caustic and critical curves II-183 // 2.3.1. Circular lenses II-184 // 2.3.2. The Einstein radius and radial arcs II-187 // 2.3.3. Non-circular lenses II-189 // 3. Strong Lensing II-190 // 3.1. Methods of solving the lens equation: // LTM and non-LTM 11-190 // 3.2. Image magnification 11-191 // 3.3. Time delays II-191 // 3.4. Comparison of lens model software II-194 // 3.4.1. Non-light traces mass software II-194 // 3.4.2. Light traces mass software II-194 // 3.5.
Lens statistics II-195 // 4. Weak Lensing 11-196 // 4.1. Basic method 11-197 // 4.1.1. Shape measurements II-199 // 4.2. E/B decomposition 11-203 // 4.3. Magnification bias II-206 // 4.3.1. Simulation test II-206 // 4.3.2. Higher-order weak lensing-flexion // and HOLICs II-207 // 4.4. Cluster mass reconstruction 11-208 // 4.4.1. Density profile 11-211 // 4.4.2. Dark matter subhalos in the coma // cluster 11-212 // 4.5. Cosmic shear 11-214 // 4.5.1. How to measure the cosmic density field 11-217 // 5. Conclusion and Future 11-219 // 18. Inflationary cosmology: First 30-1- years 11-225 // Katsuhiko Sato and Jun’ichi Yokoyama IJMPD 24 (2015) 1530025 // 1. Introduction 11-225 // 1.1. Developments in Japan 11-227 // 1.2. Developments in Russia 11-228 // 1.3. Inflation paradigm 11-230 // 2. Resolution of Fundamental Problems 11-231 // 3. Realization of Inflation 11-233 // Contents xxvii // 3.1. Three mechanisms 11-233 // 3.2. Inflation scenario 11-234 // 4. Slow-Roll Inflation Models 11-236 // 4.1. Large-field models 11-236 // 4.2. Small-field model 11-237 // 4.3. Hybrid inflation II-238 // 5. Reheating 11-239 // 6. Generation of Quantum Fluctuations that // Eventually Behave Classically 11-242 // 7. Cosmological Perturbation 11-244 // 8. Generation of Curvature Fluctuations in // Inflationary Cosmology 11-246 // 9. Tensor Perturbation 11-249 // 10. The Most General Single-Field Inflation 11-250 // 10.1. Homogeneous background equations 11-251 // 10.2. Kinetically driven G-inflation
11-253 // 10.3. Potential-driven slow-roll G-inflation 11-254 // 11. Power Spectrum of Perturbations in Generalized // G-inflation 11-255 // 11.1. Tensor perturbations 11-255 // 11.2. Scalar perturbations 11-258 // 12. Inflationary Cosmology and Observations 11-261 // 12.1. Large-field models 11-264 // 12.2. Small-field model 11-265 // 12.3. Hybrid inflation model 11-266 // 12.4. Noncanonical models and multi-field models 11-266 // 13. Conclusion 11-267 // 19. Inflation, string theory and cosmic strings 11-273 // David F. Chernoff and S.-H. Henry Tye IJMPD 24 (2015) 1530010 // 1. Introduction 11-273 // 2. The Inflationary Universe 11-277 // 3. String Theory and Inflation 11-280 // 3.1. String theory and flux compactification 11-281 // 3.2. Inflation in string theory 11-282 // 4. Small r Scenarios 11-283 // 4.1. Brane inflation 11-284 // 4.1.1. D3-D3-hva,ne inflation 11-285 // xxviii // Contents // 4.1.2. Inflection point inflation 11-286 // 4.1.3. DBI model 11-286 // 4.1.4. D3-Ł>7-brane inflation 11-287 // 4.2. Kahler moduli inflation 11-287 // 5. Large r Scenarios 11-288 // 5.1. The Kim-Nilles-Peloso mechanism 11-288 // 5.1.1. Natural inflation 11-288 // 5.1.2. N-flation ?-288 // 5.1.3. Helical inflation H-290 // 5.2. Axion monodromy 11-291 // 5.3. Discussions 11-292 // 6. Relics: Low Tension Cosmic Strings H-293 // 6.1. Strings in brane world cosmology H-296 // 6.2. Current bounds on string tension G/i and // probability of intercommutation p H-297 // 7. Scaling, Slowing, Clustering
and Evaporating ?-299 // 7.1. Large-scale string distribution H-302 // 7.2. Local string distribution H-305 // 8. Detection H-307 // 8.1. Detection via Microlensing H-307 // 8.2. WFIRST microlensing rates 11-307 // 8.3. Gravitational waves 11-311 // 9. Summary 11-314 // Part V. Quantum Gravity 11-323 // 20. Quantum gravity: A brief history of ideas // and some outlooks 11-325 // Steven Carlip, Dah-Wei Chiou, Wei-Tou Ni and Richard Woodard IJMPD 24 (2015) 1530028 // 1. Prelude 11-325 // 2. Perturbative Quantum Gravity 11-327 // 3. String Theory 11-328 // 4. Loop Quantum Gravity 11-332 // 5. Black Hole Thermodynamics 11-334 // 6. Quantum Gravity Phenomenology 11-337 // 21. Perturbative quantum gravity comes of age 11-349 // R. P. Woodard IJMPD 23 (2014) 1430020 // Contents xxix // 1. Introduction ?-349 // 2. Why Quantum Gravitational Effects from // Primordial Inflation are Observable 11-351 // 2.1. The background geometry 11-351 // 2.2. Inflationary particle production II-355 // 3. Tree Order Power Spectra II-358 // 3.1. The background for single-scalar inflation 11-359 // 3.2. Gauge-fixed, constrained action 11-360 // 3.3. Tree order power spectra II-363 // 3.4. The controversy over adiabatic regularization H-369 // 3.5. Why these are quantum gravitational effects H-369 // 4. Loop Corrections to the Power Spectra 11-371 // 4.1. How to make computations 11-372 // 4.2. ?-Suppression and late-time growth 11-376 // 4.3. Nonlinear extensions 11-380 // 4.4. The promise of 21 cm radiation
11-382 // 5. Other Quantum Gravitational Effects 11-384 // 5.1. Linearized effective field equations 11-384 // 5.2. Propagators and tensor 1PI functions 11-386 // 5.3. Results and open problems 11-395 // 5.4. Back-Reaction 11-399 // 6. Conclusions 11-402 // Black hole thermodynamics 11-415 // S. Carlip // IJMPD 23 (2014) 1430023 // 1. Introduction 11-415 // 2. Prehistory: Black Hole Mechanics and Wheeler’s // Cup of Tea 11-416 // 3. Hawking Radiation 11-418 // 3.1. Quantum field theory in curved spacetime 11-419 // 3.2. Hawking’s calculation 11-420 // 4. Back-of-the-Envelope Estimates 11-422 // 4.1. Entropy 11-422 // 4.2. Temperature 11-423 // 5. The Many Derivations of Black Hole // Thermodynamics 11-424 // 5.1. Other settings 11-425 // 5.2. Unruh radiation 11-425 // XXX // Contents // 5.3. Particle detectors 11-426 // 5.4. Tunneling H-426 // 5.5. Hawking radiation from anomalies H-427 // 5.6. Periodic Greens functions 11-428 // 5.7. Periodic Gravitational partition function H-429 // 5.8. Periodic Pair production of black holes 11-431 // 5.9. Periodic Quantum field theory and the // eternal black hole II-431 // 5.10. Periodic Quantized gravity and classical // matter II-432 // 5.11. Periodic Other approaches 11-433 // 6. Thermodynamic Properties of Black Holes H-433 // 6.1. Periodic Black hole evaporation H-434 // 6.2. Periodic Heat capacity H-434 // 6.3. Periodic Phase transitions II-435 // 6.4. Periodic Thermodynamic volume 11-435 // 6.5. Periodic Lorentz violation and
perpetual // motion machines H-436 // 7. Approaches to Black Hole Statistical Mechanics 11-437 // 7.1. Periodic “Phenomenology” H-437 // 7.2. Periodic Entanglement entropy 11-438 // 7.3. Periodic String theory H-440 // 7.3.1. Weakly coupled strings and branes 11-440 // 7.3.2. Fuzzballs ?-441 // 7.3.3. The AdS/CFT correspondence 11-441 // 7.4. Loop quantum gravity 11-442 // 7.4.1. Microcanonical approach 11-442 // 7.4.2. Microcanonical approach 11-444 // 7.5. Other ensembles 11-445 // 7.6. Induced gravity 11-445 // 7.7. Logarithmic corrections 11-446 // 8. The Holographic Conjecture 11-446 // 9. The Problem of Universality 11-448 // 9.1. State-counting in conformal field theory H-449 // 9.2. Application to black holes 11-450 // 9.3. Effective descriptions 11-451 // 10. The Information Loss Problem H-451 // 10.1. Nonunit ary evolution 11-452 // Contents xxxi // 10.2. No black holes 11-452 // 10.3. Remnants and baby universes H-453 // 10.4. Hawking radiation as a pure state 11-454 // 11. Conclusion 11-455 // Appendix A. Classical Black Holes 11-456 // 23. Loop quantum gravity 11-467 // Dah-Wei Chiou IJMPD 24 (2015) 1530005 // 1. Introduction 11-467 // 2. Motivations 11-469 // 2.1. Why quantum gravity? 11-469 // 2.2. Difficulties of quantum gravity 11-470 // 2.3. Background-independent approach 11-470 // 3. Connection Theories of General Relativity 11-471 // 3.1. Connection dynamics 11-471 // 3.2. Canonical (Hamiltonian) formulation 11-473 // 3.3. Remarks on connection theories
11-476 // 4. Quantum Kinematics 11-478 // 4.1. Quantization scheme 11-478 // 4.2. Cylindrical functions 11-479 // 4.3. Spin networks II-481 // 4.4. S-knots 11-483 // 5. Operators and Quantum Geometry 11-486 // 5.1. Holonomy operator 11-486 // 5.2. Area operator 11-487 // 5.3. Volume operator 11-489 // 5.4. Quantum geometry 11-490 // 6. Scalar Constraint and Quantum Dynamics 11-492 // 6.1. Regulated classical scalar constraint 11-492 // 6.2. Quantum scalar constraint 11-495 // 6.3. Solutions to the scalar constraint 11-498 // 6.4. Quantum dynamics 11-500 // 7. Inclusion of Matter Fields 11-503 // 7.1. Yang-Mills fields 11-503 // 7.2. Fermions 11-504 // 7.3. Scalar fields 11-505 // 7.4. S-knots of geometry and matter 11-506 // xxxi i // Contents // 8. Low-Energy Physics ?-507 // 8.1. Weave states 11-507 // 8.2. Loop states versus Fock states 11-508 // 8.3. Holomorphic coherent states H-508 // 9. Spin Foam Theory 11-511 // 9.1. From s-knots to spin foams H-511 // 9.2. Spin foam formalism H-514 // 10. Black Hole Thermodynamics II-515 // 10.1. Statistical ensemble H-516 // 10.2. Bekenstein-Hawking entropy H-517 // 10.3. More on black hole entropy H-519 // 11. Loop Quantum Cosmology H-520 // 11.1. Symmetry reduction H-520 // 11.2. Quantum kinematics 11-522 // 11.3. Quantum constraint operator H-524 // 11.4. Physical Hilbert space 11-526 // 11.5. Quantum dynamics 11-527 // 11.6. Other models 11-528 // 12. Current Directions and Open Issues 11-529 // 12.1. The master constraint program
II-529 // 12.2. Algebraic quantum gravity H-530 // 12.3. Reduced phase space quantization 11-530 // 12.4. Off-shell closure of quantum constraints 11-532 // 12.5. Loop quantum gravity versus spin foam theory 11-533 // 12.6. Covariant loop quantum gravity 11-533 // 12.7. Spin foam cosmology 11-534 // 12.8. Quantum reduced loop gravity 11-534 // 12.9. Cosmological perturbations in the Planck era 11-534 // 12.10. Spherically symmetric loop gravity 11-535 // 12.11. Planck stars and black hole fireworks H-535 // 12.12. Information loss problem 11-536 // 12.13. Quantum gravity phenomenology 11-537 // 12.14. Supersymmetry and other dimensions 11-537 // Subject Index I // Author Index XIII

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC