Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 30.10.2021. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Japan : Springer, [2016]
xiii, 374 stran : ilustrace ; 25 cm

objednat
ISBN 978-4-431-55977-1 (vázáno)
Applied mathematical sciences, ISSN 0066-5452 ; volume 194
Obsahuje bibliografii na stranách 359-369 a rejstřík
001451358
Part I Geometry of Divergence Functions: Dually Flat Riemannian Structure // 1 Manifold, Divergence and Dually Flat Structure 3 // 1.1 Manifolds 3 // 1.1.1 Manifold and Coordinate Systems 3 // 1.1.2 Examples of Manifolds 5 // 1.2 Divergence Between Two Points 9 // 1.2.1 Divergence 9 // 1.2.2 Examples of Divergence 11 // 1.3 Convex Function and Bregman Divergence 12 // 1.3.1 Convex Function 12 // 1.3.2 Bregman Divergence 13 // 1.4 Legendre Transformation 16 // 1.5 Dually Flat Riemannian Structure Derived from Convex // Function 19 // 1.5.1 Affine and Dual Affine Coordinate Systems 19 // 1.5.2 Tangent Space, Basis Vectors and Riemannian Metric 20 // 1.5.3 Parallel Transport of Vector 23 // 1.6 Generalized Pythagorean Theorem and Projection Theorem 24 // 1.6.1 Generalized Pythagorean Theorem 24 // 1.6.2 Projection Theorem 26 // 1.6.3 Divergence Between Submanifolds: Alternating Minimization Algorithm 27 // 2 Exponential Families and Mixture Families of Probability Distributions 31 // 2.1 Exponential Family of Probability Distributions 31 // 2.2 Examples of Exponential Family: Gaussian and Discrete Distributions 34 // 2.2.1 Gaussian Distribution 34 // 2.2.2 Discrete Distribution 35 // 2.3 Mixture Family of Probability Distributions 36 // 2.4 Flat Structure: e-flat and m-flat 37 // 2.5 On Infinite-Dimensional Manifold // of Probability Distributions
39 // 2.6 Kernel Exponential Family 42 // 2.7 Bregman Divergence and Exponential Family 43 // 2.8 Applications of Pythagorean Theorem 44 // 2.8.1 Maximum Entropy Principle 44 // 2.8.2 Mutual Information 46 // 2.8.3 Repeated Observations and Maximum Likelihood // Estimator 47 // 3 Invariant Geometry of Manifold of Probability Distributions 51 // 3.1 Invariance Criterion 51 // 3.2 Information Monotonicity Under Coarse Graining 53 // 3.2.1 Coarse Graining and Sufficient Statistics in Sn 53 // 3.2.2 Invariant Divergence 54 // 3.3 Examples of/-Divergence in Sn 57 // 3.3.1 KL-Divergence 57 // 3.3.2 x2-Diyergence 57 // 3.3.3 α-Divergence 57 // 3.4 General Properties of/-Divergence and KL-Divergence 59 // 3.4.1 Properties of f-Divergence 59 // 3.4.2 Properties of KL-Divergence 60 // 3.5 Fisher Information: The Unique Invariant Metric 62 // 3.6 /-Divergence in Manifold of Positive Measures 65 // 4 α-Geometry, Tsallis α-Entropy and Positive-Definite Matrices 71 // 4.1 Invariant and Flat Divergence 71 // 4.1.1 KL-Divergence Is Unique 71 // 4.1.2 α-Divergence Is Unique in Rn+ 72 // 4.2 α-Geometry in Sn and Rn+ 75 // 4.2.1 α-Geodesic and α-Pythagorean Theorem in Rn+ 75 // 4.2.2 α-Geodesic in Sn 76 // 4.2.3 α-Pythagorean Theorem and α-Projection Theorem in Sn 76 // 4.2.4 Apportionment Due to α-Divergence 77 // 4.2.5 α-Mean 77 // 4.2.6 α-Families of Probability Distributions 80 // 4.2.7 Optimality of α-Integration 82 // 4.2.8 Application to α-Integration of Experts 83 // C 4.3 Geometry of Tsallis α-Entropy 84 // 4.3.1 α-Logarithm and α-Exponential Function 85 // 4.3.2 α-Exponential Family (a-Family) of Probability Distributions 86 // 4.3.3 α-Escort Geometry 87 // 4.3.4 Deformed Exponential Family: x-Escort Geometry 89 // 4.3.5 Conformal Character of α-Escort Geometry 91 // 4.4 (m, v)-Divergence: Dually Flat Divergence in Manifold of Positive Measures 92 //
4.4.1 Decomposable (m, v)-Divergence 92 // 4.4.2 General (w, v) Flat Structure in Rn+ 95 // 4.5 Invariant Flat Divergence in Manifold of Positive-Definite Matrices 96 // 4.5.1 Bregman Divergence and Invariance Under Gl(n) 96 // 4.5.2 Invariant Flat Decomposable Divergences Under 0(n) 98 // 4.5.3 Non-flat Invariant Divergences 101 // 4.6 Miscellaneous Divergences 102 // 4.6.1 y-Divergence 102 // 4.6.2 Other Types of (a, )6)-Divergences 102 // 4.6.3 Burbea-Rao Divergence and Jensen-Shannon // Divergence 103 // 4.6.4 (p, r)-Structure and (F, ?,?)-Structure 104 // Part II Introduction to Dual Differential Geometry // 5 Elements of Differential Geometry 109 // 5.1 Manifold and Tangent Space 109 // 5.2 Riemannian Metric 111 // 5.3 Affine Connection 112 // 5.4 Tensors 114 // 5.5 Covariant Derivative 116 // 5.6 Geodesic 117 // 5.7 Parallel Transport of Vector 118 // 5.8 Riemann-Christoffel Curvature 119 // 5.8.1 Round-the-World Transport of Vector 120 // 5.8.2 Co variant Derivative and RC Curvature 122 // 5.8.3 Flat Manifold 123 // 5.9 Levi-Civita (Riemannian) Connection 124 // 5.10 Submanifold and Embedding Curvature 126 // 5.10.1 Submanifold 126 // 5.10.2 Embedding Curvature 127 // x Contents // 6 Dual Affine Connections and Dually Flat Manifold 131 // 6.1 Dual Connections 131 // 6.2 Metric and Cubic Tensor Derived from Divergence 134 // 6.3 Invariant Metric and Cubic Tensor 136 // 6.4 a-Geometry 136 // 6.5 Dually Flat Manifold 137 // 6.6 Canonical Divergence in Dually Flat Manifold 138 // 6.7 Canonical Divergence in General Manifold of Dual Connections 141 // 6.8 Dual Foliations of Flat Manifold and Mixed Coordinates 143 // 6.8.1 fc-cut of Dual Coordinate Systems: Mixed Coordinates and Foliation 144 // 6.8.2 Decomposition of Canonical Divergence 145 // 6.8.3 A Simple Illustrative Example: Neural Firing 146 // 6.8.4 Higher-Order Interactions of Neuronal Spikes 148 //
6.9 System Complexity and Integrated Information 150 // 6.10 Input-Output Analysis in Economics 157 // Part III Information Geometry of Statistical Inference // 7 Asymptotic Theory of Statistical Inference 165 // 7.1 Estimation 165 // 7.2 Estimation in Exponential Family 166 // 7.3 Estimation in Curved Exponential Family 168 // 7.4 First-Order Asymptotic Theory of Estimation 171 // 7.5 Higher-Order Asymptotic Theory of Estimation 173 // 7.6 Asymptotic Theory of Hypothesis Testing 175 // 8 Estimation in the Presence of Hidden Variables 179 // 8.1 EM Algorithm 179 // 8.1.1 Statistical Model with Hidden Variables 179 // 8.1.2 Minimizing Divergence Between Model Manifold / and Data Manifold 182 // 8.1.3 EM Algorithm 184 // 8.1.4 Example: Gaussian Mixture 184 // 8.2 Loss of Information by Data Reduction 185 // 8.3 Estimation Based on Misspecified Statistical Model 186 // 9 Neyman-Scott Problem: Estimating Function and Semiparametric Statistical Model 191 // 9.1 Statistical Model Including Nuisance Parameters 191 // 9.2 Neyman-Scott Problem and Semiparametrics 194 // 9.3 Estimating Function 197 // 9.4 Information Geometry of Estimating Function 199 // 9.5 Solutions to Neyman-Scott Problems 206 // 9.5.1 Estimating Function in the Exponential Case 206 // 9.5.2 Coefficient of Linear Dependence 208 // 9.5.3 Scale Problem 209 // 9.5.4 Temporal Firing Pattern of Single Neuron 211 // 10 Linear Systems and Time Series 215 // 10.1 Stationary Time Series and Linear System 215 // 10.2 Typical Finite-Dimensional Manifolds of Time Series 217 // 10.3 Dual Geometry of System Manifold 219 // 10.4 Geometry of AR, MA and ARMA Models 223 // Part IV Applications of Information Geometry // 11 Machine Learning 231 // 11.1 Clustering Patterns 231 // 11.1.1 Pattern Space and Divergence 231 // 11.1.2 Center of Cluster 232 // 11.1.3 k-Means: Clustering Algorithm 233 // 11.1.4 Voronoi Diagram 234 //
11.1.5 Stochastic Version of Classification and Clustering 236 // 11.1.6 Robust Cluster Center 238 // 11.1.7 Asmptotic Evaluation of Error Probability in Pattern Recognition: Chemoff Information 240 // 11.2 Geometry of Support Vector Machine 242 // 11.2.1 Linear Classifier 242 // 11.2.2 Embedding into High-Dimensional Space 245 // 11.2.3 Kernel Method 246 // 11.2.4 Riemannian Metric Induced by Kernel 247 // 11.3 Stochastic Reasoning: Belief Propagation and ??? Algorithms 249 // 11.3.1 Graphical Model 250 // 11.3.2 Mean Field Approximation and m-Projection 252 // 11.3.3 Belief Propagation 255 // 11.3.4 Solution of BP Algorithm 257 // 11.3.5 ??? (Convex-Concave Computational Procedure) 259 // 11.4 Information Geometry of Boosting 260 // 11.4.1 Boosting: Integration of Weak Machines 261 // 11.4.2 Stochastic Interpretation of Machine 262 // 11.4.3 Construction of New Weak Machines 263 // 11.4.4 Determination of the Weights of Weak Machines 263 // 11.5 Bayesian Inference and Deep Learning 265 // 11.5.1 Bayesian Duality in Exponential Family 266 // 11.5.2 Restricted Boltzmann Machine 268 // 11.5.3 Unsupervised Learning of RBM 269 // 11.5.4 Geometry of Contrastive Divergence 273 // 11.5.5 Gaussian RBM 275 // 12 Natural Gradient Learning and Its Dynamics // in Singular Regions 279 // 12.1 Natural Gradient Stochastic Descent Learning 279 // 12.1.1 On-Line Learning and Batch Learning 279 // 12.1.2 Natural Gradient: Steepest Descent Direction // in Riemannian Manifold 282 // 12.1.3 Riemannian Metric, Hessian and Absolute Hessian 284 // 12.1.4 Stochastic Relaxation of Optimization Problem 286 // 12.1.5 Natural Policy Gradient in Reinforcement Learning 287 // 12.1.6 Mirror Descent and Natural Gradient 289 // 12.1.7 Properties of Natural Gradient Learning 290 // 12.2 Singularity in Learning: Multilayer Perceptron 296 // 12.2.1 Multilayer Perceptron 296 //
12.2.2 Singularities in M 298 // 12.2.3 Dynamics of Learning in M 302 // 12.2.4 Critical Slowdown of Dynamics 305 // 12.2.5 Natural Gradient Learning Is Free of Plateaus 309 // 12.2.6 Singular Statistical Models 310 // 12.2.7 Bayesian Inference and Singular Model 312 // 13 Signal Processing and Optimization 315 // 13.1 Principal Component Analysis 315 // 13.1.1 Eigenvalue Analysis 315 // 13.1.2 Principal Components, Minor Components and Whitening 316 // 13.1.3 Dynamics of Learning of Principal and Minor Components 319 // 13.2 Independent Component Analysis 322 // 13.2.3 Estimating Function of ICA: Semiparametric Approach 330 // 13.3 Non-negative Matrix Factorization 333 // 13.4 Sparse Signal Processing 336 // 13.4.1 Linear Regression and Sparse Solution 337 // 13.4.2 Minimization of Convex Function Under L1 Constraint 338 // 13.4.3 Analysis of Solution Path 341 // 13.4.4 Minkovskian Gradient Flow 343 // 13.4.5 Underdetermined Case 344 // 13.5 Optimization in Convex Programming 345 // 13.5.1 Convex Programming 345 // 13.5.2 Dually Flat Structure Derived from Barrier Function 347 // 13.5.3 Computational Complexity and m-curvature 348 // 13.6 Dual Geometry Derived from Game Theory 349 // 13.6.1 Minimization of Game-Score 349 // 13.6.2 Hyvärinen Score 353 // References 359 // Index 371

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC