Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 02.06.2018. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
AKVIZICE
Oxford University Press, 2012.


ISBN 978-0199563029
001462657
Contents // List of abbreviations xiii // 1 Introduction 1 // 1.1 A survey of time-dependent phenomena 1 // 1.2 Preview of and guide to this book 7 // 2 Review of ground-state density-functional theory 10 // 2.1 The formal framework of DFT 11 // 2.2 Exact properties 21 // 2.3 Approximate functionals 30 // PART I THE BASIC FORMALISM OF TDDFT // 3 Fundamental existence theorems 45 // 3.1 Time-dependent inany-body systems 45 // 3.2 The Runge Gross theorem 50 // 3.3 The van Leeuwen theorem 54 // 4 The time-dependent Kohn-Sham scheme 59 // 4.1 The time-dependent Kolm -Sham equation 59 // 4.2 Spin-dependent systems 61 // 4.3 The adiabatic approximation 62 // 4.4 The meaning of self-consistency in DFT and TDDFT 65 // 4.5 Numerical time propagation 67 // 5 Time-dependent observables 73 // 5.1 Explicit density functionals 73 // 5.2 Implicit density functionals 81 // 5.3 The time-dependent energy 88 // 6 Properties of the time-dependent xc potential 91 // 6.1 What is the universal xc functional? 91 // 6.2 Some exact conditions 93 // 6.3 Galilean invariance and the harmonic potential theorem 98 // 6.4 Memory and causality 103 // 6.5 Initial-state dependence 107 // 6.6 Time-dependent, variational principles 111 // 6.7 Discontinuity upon change of particle number 115 // x Contents // PART II LINEAR RESPONSE AND EXCITATION ENERGIES // 7 The formal framework of linear-response TDDFT 123 // 7.1. General linear-response theory 124 // 7.2 Spectroscopic observables 132 // 7.3 Linear density response
in TDDFT 137 // 7.4 Warm-up exercise: TDDFT for two-level systems 143 // 7.5 Calculation of excitation energies: the Casida equation 145 // 7.6 The Tarnm Dancoff approximation and other simplifications 151 // 7.7 Excitation energies with time-dependent Hartree Foek theory 153 // 8 The frequency-dependent xc kernel 157 // 8.1 Exact properties 157 // 8.2 Approximations 163 // 8.3 The xc kernels of the homogeneous electron liquid 164 // 9 Applications to atomic and molecular systems 176 // 9.1 Excitation energies of small systems: basic trends and features 177 // 9.2 Molecular excited-state properties with TDDFT: an overview 182 // 9.3 Double excitations 189 // 9.4 Charge-transfer excitations 195 // 9.5 The Sternheimer equation 202 // 9.6 Optical spectra via time propagation schemes 204 // PART III FURTHER DEVELOPMENTS // 10 Time-dependent current-DFT 213 // 10.1 The adiabatic approximation and beyond 213 // 10.2 The failure of nonadiabatic local approximations in TDDFT 215 // 10.3 The formal framework of TDCDFT 218 // 10.4 The VK functional 225 // 10.5 Applications of TDCDFT in the linear-response regime 231 // 10.6 Memory effects: elasticity and dissipation 241 // 11 The time-dependent optimized effective potential 252 // 11.1 The static OEP approach for orbital functionals 253 // 11.2 The TDOEP scheme 263 // 11.3 TDOEP in the linear regime 276 // 12 Extended systems 279 // 12.1 Electronic structure and excitations of periodic solids 279 // 12.2 Spectroscopy of density fluctuations:
plasmons 285 // 12.3 Optical absorption and excitons 289 // 12.4 TDCDFT in periodic systems 299 // 13 TDDFT and many-body theory 304 // 13.1 Perturbation theory along the adiabatic connection 304 // 13.2 Nonequilibrium Green’s functions and the Keldysh action 308 // 13.3 xc kernels from many-body theory 318 // Contents xi // PART IV SPECIAL TOPICS // 14 Long-range correlations and dispersion interactions 333 // 14.1 The adiabatic-connection fluctnation-dissipation approach 333 // 14.2 Van der Waals interactions 340 // 15 Nanoscale transport and molecular junctions 351 // 15.1 Basic concepts . 352 // 15.2 Transport in the linear-response limit 355 // 15.3 Finite-bias and non-steady-state transport 360 // 16 Strong-Held phenomena and optimal control 374 // 16.1 Multiphoton ionization 376 // 16.2 High-order harmonic generation 386 // 16.3 Optimal control 388 // 17 Nuclear motion 394 // 17.1 Potcntial-energy surfaces 394 // 17.2 Ah initio molecular dynamics 401 // 17.3 Multicomponent TDDFT 413 // Appendix A Atomic units 416 // A.l Atomic units in vacuum 416 // A.2 Atomic units in the effective-mass approximation 417 // Appendix В Functionals and functional derivatives 419 // Appendix С Densities and density matrices 422 // Appendix 1) Hartree-Fock and other wave-functlon approaches 425 // Appendix E Constructing the xc potential from a given density 429 // E.l Ground-state densities 429 // E.2 Time-dependent densities 431 // Appendix F DFT for excited states 434 // F.l Generalized
Kohn Shum schemes for excited states 434 // F.2 Ensemble formalism 436 // Appendix G Systems with noncollinear spins 439 // G.l DFT for noncollinear spins 439 // G.2 Linear response and excitation energies 440 // Appendix H The dipole approximation 445 // H.l Interaction with electromagnetic waves 445 // H.2 Dipole matrix elements and dipole moments 447 // Appendix I A brief review of classical fluid dynamics 450 // I.1 Basies and ideal fluids 450 // 1.2 Viscous fluids and dissipation 452 // xii Contents // Appendix J Constructing the scalar xc kernel from the tensor // xc kernel 455 // Appendix К Semiconductor quantum wells 458 // K.l Effective-mass approximation and subhand levels 459 // K.2 Intersubband dynamics 462 // Appendix L TDDFT in a Lagrangian frame 465 // L.l Fluid motion in the Lagrangian and laboratory frames 466 // L.2 TDDFT in the Lagrangian frame 469 // L.3 The snmll-deformation approximation 471 // L.4 The nonlinear elastic approximation 473 // L.5 Validity of the VK potential and breakdown of the adiabatic // approximation 474 // Appendix M Inversion of the dielectric matrix 477 // Appendix N Review literature on DFT and many-body theory 479 // Appendix О TDDFT computer codes 482 // References 484 // Index 511

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC