Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 14.12.2019. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Fourth edition
New York ; London : Garland Science, Taylor & Francis Group, [2018]
xvii, 520 stran : barevné ilustrace ; 28 cm

objednat
ISBN 978-0-8153-4508-4 (brožováno)
Terminologický slovník
Obsahuje bibliografie a rejstřík
001463401
CONTENTS IN BRIEF // CHAPTER 1 GENOMES,TRANSCRIPTOMES, AND PROTEOMES 1 // CHAPTER 2 STUDYING DNA 27 // CHAPTER 3 MAPPING GENOMES 55 // CHAPTER 4 SEQUENCING GENOMES 87 // CHAPTERS GENOME ANNOTATION 119 // CHAPTER 6 IDENTIFYING GENE FUNCTIONS 135 // CHAPTER 7 EUKARYOTIC NUCLEAR GENOMES 155 // CHAPTER 8 GENOMES OF PROKARYOTES AND EUKARYOTIC ORGANELLES 181 // CHAPTER 9 VIRAL GENOMES AND MOBILE GENETIC ELEMENTS 203 // CHAPTER 10 ACCESSING THE GENOME 219 // CHAPTER 11 THE ROLE OF DNA-BINDING PROTEINS IN // GENOME EXPRESSION 241 // CHAPTER 12 TRANSCRIPTOMES 257 // CHAPTER 13 PROTEOMES 293 // CHAPTER 14 GENOME EXPRESSION IN THE CONTEXT OF CELL // AND ORGANISM 329 // CHAPTER 15 GENOME REPLICATION 357 // CHAPTER 16 MUTATIONS AND DNA REPAIR 389 // CHAPTER 17 RECOMBINATION AND TRANSPOSITION 411 // CHAPTER 18 HOW GENOMES EVOLVE 429 // GLOSSARY 463 // INDEX // 491 // CONTENTS // CHAPTER 1 // GENOMES, TRANSCRIPTOMES, // AND PROTEOMES 1 // 1.1 DNA 2 // Genes are made of DNA 3 // DNA is a polymer of nucleotides 4 // The double helix is stabilized by base pairing and base stacking 8 // The double helix has structural flexibility 9 // 1.2 RNA ANDTHETRANSCRIPTOME 11 // RNA is a second type of polynucleotide 12 // The RNA content of the cell 12 // Many RNAs are synthesized as precursor molecules 13 // There are different definitions of the transcriptome 15 // 1.3 PROTEINS ANDTHEPROTEOME 16 // There are four hierarchical levels of protein structure 16 Amino acid diversity underlies protein diversity 17
// The link between the transcriptome and the proteome 19 // The genetic code is not universal 20 // The link between the proteome and the biochemistry of the cell 22 // SUMMARY 23 // SHORT ANSWER QUESTIONS 24 // IN-DEPTH PROBLEMS 24 // FURTHER READING 25 // CHAPTER 2 // STUDYING DNA 27 // 2.1 ENZYMES FOR DNA MANIPULATION 28 // The mode of action of a template-dependent DNA polymerase 28 // The types of DNA polymerase used in research 30 // Restriction endonucleases enable DNA molecules to be cut at defined positions 32 // Gel electrophoresis is used to examine the results of a restriction digest 34 // Interesting DNA fragments can be identified by Southern hybridization 35 // ?gases join DNA fragments together 37 // End-modification enzymes 38 // 2.2 THE POLYMERASE CHAIN REACTION 38 // Carrying out a PCR 39 // The rate of product formation can be followed during a PCR 40 // PCR has many and diverse applications 41 // 2.3 DNA CLONING 41 // Why is gene cloning important? 41 // The simplest cloning vectors are based on Ł coli plasmids 43 // Bacteriophages can also be used as cloning vectors 44 // Vectors for longer pieces of DNA 47 // DNA can be cloned in organisms other than Ł coli 48 // SUMMARY 50 // SHORT ANSWER QUESTIONS 51 // IN-DEPTH PROBLEMS 51 // FURTHER READING 52 // CHAPTERS // MAPPING GENOMES 55 // 3.1 WHY A GENOME MAP IS // IMPORTANT 55 // Genome maps are needed in order to sequence // the more complex genomes 55 // Genome maps are not just sequencing aids 57 // 3.2 MARKERS
FOR GENETIC MAPPING 58 // Genes were the first markers to be used 58 // RFLPs and SSLPs are examples of DNA markers 59 // Single-nucleotide polymorphisms are the most useful type of DNA marker 61 // 3.3 THE BASIS TO GENETIC MAPPING 63 // The principles of inheritance and the discovery of linkage 63 // Partial linkage is explained by the behavior of chromosomes during meiosis 65 // From partial linkage to genetic mapping 68 // CONTENTS xi // 3.4 LINKAGE ANALYSIS WITH DIFFERENT // TYPES OF ORGANISMS 69 // Linkage analysis when planned breeding experiments are possible 69 // Gene mapping by human pedigree analysis 71 // Genetic mapping in bacteria 73 // The limitations of linkage analysis 74 // 3.5 PHYSICAL MAPPING BY DIRECT // EXAMINATION OF DNA MOLECULES 75 // Conventional restriction mapping is applicable // only to small DNA molecules 75 // Optical mapping can locate restriction sites in // longer DNA molecules 77 // Optical mapping can be used to map other // features in a DNA molecule 79 // 3.6 PHYSICAL MAPPING BY ASSIGNING // MARKERS TO DNA FRAGMENTS 81 // Any unique sequence can be used as an STS 81 // DNA fragments for STS mapping can be obtained as radiation hybrids 82 // A clone library can be used as the mapping reagent 83 // SUMMARY 84 // SHORT ANSWER QUESTIONS 85 // IN-DEPTH PROBLEMS 85 // FURTHER READING 86 // CHAPTER 4 // SEQUENCING GENOMES 87 // 4.1 CHAIN-TERMINATION SEQUENCING 87 // Chain-termination sequencing in outline 87 // Not all DNA polymerases can be used
for sequencing 89 // Chain-termination sequencing with Taq polymerase 90 Strengths and limitations of chain-termination sequencing 91 // 4.2 NEXT-GENERATION SEQUENCING 92 // Preparation of a sequencing library is the common feature of next-generation methods 93 // Various next-generation sequencing methods have been devised 95 // Third- and fourth-generation methods enable sequencing in real time 97 // 4.3 HOW TO SEQUENCE A GENOME 98 // The potential of the shotgun method was proven by the Haemophilus influenzae sequence 99 // Many prokaryotic genomes have been sequenced by the shotgun method 100 // Shotgun sequencing of eukaryotic genomes requires sophisticated assembly programs 102 // More complex genomes can be sequenced by a hierarchical shotgun approach 104 // What is a genome sequence and do we always need one? 107 // 4.4 A SURVEY OF EUKARYOTIC GENOME SEQUENCING PROJECTS 109 // The Human Genome Project: genome sequencing in the heroic age 109 // The Neanderthal genome: assembly of an extinct genome by use of the human sequence as a reference 110 // The giant panda genome: shotgun sequencing based entirely on next-generation data 111 // The barley genome: the concept of gene space 113 // SUMMARY 115 // SHORT ANSWER QUESTIONS 115 // IN-DEPTH PROBLEMS 116 // FURTHER READING 117 // CHAPTERS // GENOME ANNOTATION 119 // 5.1 GENOME ANNOTATION BY COMPUTER // ANALYSIS OF THE DNA SEQUENCE 119 // The coding regions of genes are open reading frames 119 // Simple ORF scans are less effective
with genomes of higher eukaryotes 120 // Locating genes for noncoding RNA 122 // Homology searches and comparative genomics give an extra dimension to gene prediction 123 // 5.2 GENOME ANNOTATION BY ANALYSIS // OF GENETRANSCRIPTS 124 // Hybridization tests can determine if a fragment contains transcribed sequences 125 // Methods are available for precise mapping of the ends of transcripts 126 // Exon-intron boundaries can also be located with precision 126 // 5.3 ANNOTATION BY GENOMEWIDE RNA // MAPPING 127 // Tiling arrays enable transcripts to be mapped onto chromosomes or entire genomes 128 // Transcript sequences can be directly mapped onto a genome 129 // 5.4 GENOME BROWSERS 131 // xii // CONTENTS // SUMMARY 132 // SHORT ANSWER QUESTIONS 132 // IN-DEPTH PROBLEMS 133 // FURTHER READING 133 // CHAPTER 6 // IDENTIFYING GENE FUNCTIONS 135 // 6.1 COMPUTER ANALYSIS OF GENE // FUNCTION 135 // Homology reflects evolutionary relationships 135 // Homology analysis can provide information on // the function of a gene 136 // Identification of protein domains can help to // assign function to an unknown gene 137 // Annotation of gene function requires a common // terminology 138 // 6.2 ASSIGNING FUNCTION BY // GENE INACTIVATION AND OVEREXPRESSION 139 // Functional analysis by gene inactivation 140 // Individual genes can be inactivated by homologous recombination 140 // Gene inactivation without homologous recombination 142 // Gene overexpression can also be used to assess function 144
// The phenotypic effect of gene inactivation or overexpression may be difficult to discern 145 // 6.3 UNDERSTANDING GENE FUNCTION BY STUDIES OF EXPRESSION PATTERN // AND PROTEIN PRODUCT 146 // Reporter genes and immunocytochemistry can be used to locate where and when genes are expressed 146 // Directed mutagenesis can be used to probe gene function in detail 147 // 6.4 USING CONVENTIONAL GENETIC ANALYSIS TO IDENTIFY GENE // FUNCTION 149 // Identification of human genes responsible for inherited diseases 150 // Genomewide association studies can also identify genes for diseases and other traits 151 // SUMMARY 152 // SHORT ANSWER QUESTIONS 153 // IN-DEPTH PROBLEMS 153 // FURTHER READING 154 // CHAPTER 7 // EUKARYOTIC NUCLEAR GENOMES 155 // 7.1 NUCLEAR GENOMES ARE CONTAINED // IN CHROMOSOMES 155 // Chromosomes are much shorter than the DNA molecules they contain 155 // Special features of metaphase chromosomes 157 // DNA-protein interactions in centromeres and telomeres 159 // 7.2 HOW ARE THE GENES ARRANGED IN A // NUCLEAR GENOME? 161 // Genes are not evenly distributed within a genome 161 A segment of the human genome 162 // The yeast genome is very compact 164 // Gene organization in other eukaryotes 165 // 7.3 HOW MANY GENES ARE THERE AND // WHAT ARE THEIR FUNCTIONS? 167 // Gene numbers can be misleading 168 // Gene catalogs reveal the distinctive features of different organisms 169 // Families of genes 172 // Pseudogenes and other evolutionary relics 174 // 7.4 THE REPETITIVE
DNA CONTENT OF // EUKARYOTIC NUCLEAR GENOMES 176 // Tandemly repeated DNA is found at centromeres and elsewhere in eukaryotic chromosomes 176 // Minisatellites and microsatellites 176 // Interspersed repeats 177 // SUMMARY 178 // SHORT ANSWER QUESTIONS 178 // IN-DEPTH PROBLEMS 179 // FURTHER READING 179 // CHAPTERS // GENOMES OF PROKARYOTES AND EUKARYOTIC ORGANELLES 181 // 8.1 PHYSICAL FEATURES OF PROKARYOTIC // GENOMES 181 // The traditional view of the prokaryotic // chromosome 181 // Some bacteria have linear or multipartite genomes 183 // 8.2 GENETIC FEATURES OF PROKARYOTIC GENOMES 186 // Gene organization in the E. coli K12 genome 186 // CONTENTS xiii // Operons are characteristic features of prokaryotic genomes 188 // Prokaryotic genome sizes and numbers of genes vary according to biological complexity 189 // Genome sizes and numbers of genes vary within individual species 190 // Distinctions between prokaryotic species are further blurred by lateral gene transfer 192 // Metagenomes describe the members of a community 194 // 8.3 EUKARYOTIC ORGANELLAR // GENOMES 195 // The endosymbiont theory explains the origin of organellar genomes 195 // Most organellar genomes are circular 196 // The gene catalogs of organellar genomes 197 // SUMMARY 198 // SHORT ANSWER QUESTIONS 200 // IN-DEPTH PROBLEMS 201 // FURTHER READING 201 // CHAPTER 9 // VIRAL GENOMES AND // MOBILE GENETIC ELEMENTS 203 // 9.1 THE GENOMES OF BACTERIOPHAGES // AND EUKARYOTIC VIRUSES 203 // Bacteriophage genomes
have diverse structures and organizations 203 // Replication strategies for bacteriophage genomes 205 // Structures and replication strategies for eukaryotic viral genomes 206 // Some retroviruses cause cancer 207 // Genomes at the edge of life 209 // 9.2 MOBILE GENETIC ELEMENTS 210 // RNA transposons with long terminal repeats are related to viral retroelements 210 // Some RNA transposons lack long terminal repeats 212 DNA transposons are common in prokaryotic genomes 213 // DNA transposons are less common in eukaryotic genomes 214 // SUMMARY 216 // SHORT ANSWER QUESTIONS 216 // IN-DEPTH PROBLEMS 217 // FURTHER READING 217 // CHAPTER 10 // ACCESSING THE GENOME 219 // 10.1 INSIDETHE NUCLEUS 219 // The nucleus has an ordered internal // structure 220 // The DNA content of a nondividing nucleus // displays different degrees of packaging 221 // The nuclear matrix is thought to provide // attachment points for chromosomal DNA 222 // Each chromosome has its own territory // within the nucleus 223 // Each chromosome comprises a series of // topologically associated domains 224 // Insulators mark the boundaries of topologically // associated domains 226 // 10.2 NUCLEOSOME MODIFICATIONS AND // GENOME EXPRESSION 228 // Acetylation of histones influences many nuclear activities including genome expression 228 // Histone deacetylation represses active regions of the genome 229 // Acetylation is not the only type of histone modification 230 // Nucleosome repositioning also influences gene
expression 231 // 10.3 DNA MODIFICATION AND GENOME // EXPRESSION 234 // Genome silencing by DNA methylation 234 // Methylation is involved in genomic imprinting // and X inactivation 235 // SUMMARY 236 // SHORT ANSWER QUESTIONS 237 // IN-DEPTH PROBLEMS 238 // FURTHER READING 238 // CHAPTER 11 // THE ROLE OF DNA-BINDING PROTEINS IN GENOME EXPRESSION 241 // 11.1 METHODS FOR STUDYING DNA-BINDING PROTEINS AND THEIR ATTACHMENT SITES 241 // X-ray crystallography provides structural data for // any protein that can be crystallized 241 // NMR spectroscopy is used to study the structures // of small proteins 243 // Gel retardation identifies DNA fragments that // bind to proteins 244 // xiv // CONTENTS // Protection assays pinpoint binding sites with greater accuracy 244 // Modification interference identifies nucleotides central to protein binding 246 // Genomewide scans for protein attachment sites 247 // 11.2 THE SPECIAL FEATURES OF // DNA-BINDING PROTEINS 249 // The helix-turn-helix motif is present in prokaryotic and eukaryotic proteins 249 // Zinc fingers are common in eukaryotic proteins 250 Other nucleic acid-binding motifs 251 // 11.3 INTERACTION BETWEEN DNA AND ITS // BINDING PROTEINS 252 // Direct readout of the nucleotide sequence 252 // The nucleotide sequence has a number of indirect effects on helix structure 253 // Contacts between DNA and proteins 253 // SUMMARY 254 // SHORT ANSWER QUESTIONS 255 // IN-DEPTH PROBLEMS 256 // FURTHER READING 256 // CHAPTER 12 // TRANSCRIPTOMES 257
// 12.1 COMPONENTS OF THE // TRANSCRIPTOME 257 // The mRNA fraction of a transcriptome is small // but complex 257 // Short noncoding RNAs have diverse functions 259 // Long noncoding RNAs are enigmatic transcripts 260 // Microarray analysis and RNA sequencing are // used to study the contents of transcriptomes 262 // 12.2 SYNTHESIS OF THE COMPONENTS // OF THE TRANSCRIPTOME 263 // RNA polymerases are molecular machines // for making RNA 264 // Transcription start points are indicated by // promoter sequences 266 // Synthesis of bacterial RNA is regulated by // repressor and activator proteins 268 // Synthesis of bacterial RNA is also regulated by // control over transcription termination 271 // Synthesis of eukaryotic RNA is regulated // primarily by activator proteins 272 // 12.3 DEGRADATION OF THE // COMPONENTS OF THE TRANSCRIPTOME 275 // Several processes are known for nonspecific // RNA turnover 275 // RNA silencing was first identified as a means of destroying invading viral RNA 276 // MicroRNAs regulate genome expression by causing specific target mRNAs to be degraded 278 // 12.4 INFLUENCE OF RNA PROCESSING ON THE COMPOSITION OF A TRANSCRIPTOME // The splicing pathway for eukaryotic pre-mRNA introns // The splicing process must have a high degree of precision // Enhancer and silencer elements specify alternative splicing pathways // 278 // 279 // 280 282 // 12.5 TRANSCRIPTOMES IN RESEARCH // Transcriptome analysis as an aid to genome annotation // Cancer transcriptomes
Transcriptomes and the responses of plants // to stress // 284 // 284 // 286 // 287 // SUMMARY 289 // SHORT ANSWER QUESTIONS 289 // IN-DEPTH PROBLEMS 290 // FURTHER READING 290 // CHAPTER 13 // PROTEOMES 293 // 13.1 STUDYING THE COMPOSITION OF // A PROTEOME 293 // The separation stage of a protein profiling // project 294 // The identification stage of a protein profiling // project 297 // Comparing the compositions of two proteomes 299 // Analytical protein arrays offer an alternative // approach to protein profiling 300 // 13.2 IDENTIFYING PROTEINS THAT // INTERACT WITH ONE ANOTHER 301 // Identifying pairs of interacting proteins 301 // Identifying the components of multiprotein complexes 204 // Identifying proteins with functional interactions 305 // Protein interaction maps display the interactions within a proteome 206 // 13.3 SYNTHESIS AND DEGRADATION // OF THE COMPONENTS OF THE // PROTEOME 308 // Ribosomes are molecular machines for making proteins 308 // CONTENTS XV // During stress, bacteria inactivate their ribosomes // in order to downsize the proteome 311 // Initiation factors mediate large-scale // remodeling of eukaryotic proteomes 312 // The translation of individual mRNAs can also // deregulated 313 // Degradation of the components of the // proteome 314 // 13.4 INFLUENCE OF PROTEIN PROCESSING ON THE COMPOSITION // OFTHE PROTEOME 315 // The amino acid sequence contains instructions // for protein folding 315 // Some proteins are activated by proteolytic // cleavage 318
// Important changes in protein activity can be // brought about by chemical modification 320 // 13.5 BEYOND THE PROTEOME 322 // The metabolome is the complete set of // metabolites present in a cell 322 // Systems biology provides an integrated // description of cellular activity 323 // SUMMARY 326 // SHORT ANSWER QUESTIONS 326 // IN-DEPTH PROBLEMS 327 // FURTHER READING 327 // CHAPTER 14 // GENOME EXPRESSION // IN THE CONTEXT OF CELL // AND ORGANISM 329 // 14.1 THE RESPONSE OFTHE GENOME // TO EXTERNAL SIGNALS 330 // Signal transmission by import of the // extracellular signaling compound 330 // Receptor proteins transmit signals across cell // membranes 332 // Some signal transduction pathways have few // steps between receptor and genome 333 // Some signal transduction pathways have many // steps between receptor and genome 334 // Some signal transduction pathways operate // via second messengers 336 // 14.2 CHANGES IN GENOME ACTIVITY // RESULTING IN CELLULAR DIFFERENTIATION 336 // Some differentiation processes involve changes to chromatin structure 336 // Yeast mating types are determined by // gene conversion events 338 // Genome rearrangements are responsible // for immunoglobulin and T-cell receptor // diversity 339 // 14.3 CHANGES IN GENOME ACTIVITY UNDERLYING DEVELOPMENT 341 // Bacteriophage X: a genetic switch enables a // choice to be made between alternative // developmental pathways 342 // Bacillus spoliation: coordination of activities in // two distinct cell types 343
// Caenorhabditis elegans: the genetic basis of // positional information and the determination // of cell fate 346 // Fruit flies: conversion of positional information // into a segmented body plan 348 // Homeotic selector genes are universal features // of higher eukaryotic development 350 // Homeotic genes also underlie plant // development 352 // SUMMARY 352 // SHORT ANSWER QUESTIONS 353 // IN-DEPTH PROBLEMS 354 // FURTHER READING 354 // CHAPTER 15 // GENOME REPLICATION 357 // 15.1 THE TOPOLOGY OF GENOME // REPLICATION 357 // The double-helical structure complicates the replication process 358 // The Meselson-Stahl experiment proved that replication is semiconservative 359 // DNA topoisomerases provide a solution to the topological problem 361 // Variations on the semiconservative theme 363 // 15.2 THE INITIATION PHASE OF GENOME // REPLICATION 364 // Initiation at the Ł coli origin of replication 364 // Origins of replication have been dearly defined in yeast 365 // Origins in higher eukaryotes have been less easy to identify 366 // 15.3 EVENTS AT THE REPLICATION FORK 367 // DNA polymerases are molecular machines for making (and degrading) DNA 367 // DNA polymerases have limitations that complicate genome replication 369 // XVI // CONTENTS // Okazaki fragments must be joined together to complete lagging-strand replication 370 // 15.4 TERMI NATION OF GENOME // REPLICATION 372 // Replication of the E. coli genome terminates // within a defined region 373 // Little is known
about termination of replication in // eukaryotes 374 // Telomerase completes replication of chromosomal // DNA molecules, at least in some cells 375 // Telomere length is implicated in cell senescence // and cancer 378 // Drosophila has a unique solution to the // end-shortening problem 379 // 15.5 REGULATION OF EUKARYOTIC // GENOME REPLICATION 380 // Genome replication must be synchronized // with the cell cycle 380 // Origin licensing is the prerequisite for passing // the Gl -S checkpoint 380 // Replication origins do not all fire at the same time 382 // The cell has various options if the genome is // damaged 383 // SUMMARY 384 // SHORT ANSWER QUESTIONS 385 // IN-DEPTH PROBLEMS 385 // FURTHER READING 386 // CHAPTER 16 // MUTATIONS AND DNA REPAIR 389 // 16.1 THE CAUSES OF MUTATIONS 389 // Errors in replication are a source of point // mutations 390 // Replication errors can also lead to insertion and // deletion mutations 391 // Mutations are also caused by chemical and // physical mutagens 394 // 16.2 REPAIR OF MUTATIONS AND OTHER // TYPES OF DNA DAMAGE 398 // Direct repair systems fill in nicks and correct some types of nucleotide modification 398 // Base excision repairs many types of damaged nucleotide 399 // Nucleotide excision repair is used to correct more extensive types of damage 401 // Mismatch repair corrects replication errors 402 // Single- and double-strand breaks can be repaired 403 If necessary, DNA damage can be bypassed during genome replication 405 // Defects
in DNA repair underlie human diseases, including cancers 406 // SUMMARY 406 // SHORT ANSWER QUESTIONS 407 // IN-DEPTH PROBLEMS 407 // FURTHER READING 408 // CHAPTER 17 RECOMBINATION AND TRANSPOSITION 411 // 17.1 HOMOLOGOUS RECOMBINATION 412 // The Holliday and Meselson-Radding models for homologous recombination 412 // The double-strand break model for homologous recombination 414 // RecBCD is the most important pathway for homologous recombination in bacteria 415 // Ł coli can also carry out homologous recombination by the RecFOR pathway 417 // Homologous recombination pathways in eukaryotes 417 // The primary role of homologous recombination is thought to be DNA repair 418 // 17.2 SITE-SPECIFIC RECOMBINATION 419 // Bacteriophage X uses site-specific recombination during the lysogenic infection cycle 419 // Site-specific recombination is an aid in construction of genetically modified plants 421 // 17.3 TRANSPOSITION 421 // Replicative and conservative transposition of // DNA transposons 422 // Retroelements transpose replicatively via an // RNA intermediate 423 // SUMMARY 425 // SHORT ANSWER QUESTIONS 426 // IN-DEPTH PROBLEMS 427 // FURTHER READING 427 // CHAPTER 18 // HOW GENOMES EVOLVE 429 // 18.1 GENOMES:THE FIRST 10 BILLION YEARS 429 // The first biochemical systems were centered on RNA 429 // The first DNA genomes 432 // How unique is life? 433 // CONTENTS xvii // 18.2 EVOLUTION OF INCREASINGLY // COMPLEX GENOMES 434 // Genome sequences provide extensive evidence // of
past gene duplications 434 // A variety of processes could result in gene // duplication 438 // Whole-genome duplication is also possible 439 // Smaller duplications can also be identified in // the human genome and other genomes 442 // Both prokaryotes and eukaryotes acquire // genes from other species 444 // Genome evolution also involves rearrangement of // existing genes 445 // There are competing hypotheses for the origins of // introns 448 // The evolution of the epigenome 449 // 18.3 GENOMES: THE LAST 6 MILLION // YEARS 450 // The human genome is very similar to that of the chimpanzee 451 // Paleogenomics is helping us understand the recent evolution of the human genome 452 // 18.4 GENOMES TODAY: DIVERSITY IN // POPULATIONS 453 // The origins of HIV/AIDS 454 // The first migrations of humans out of Africa 455 // The diversity of plant genomes is an aid in crop breeding 457 // SUMMARY 458 // SHORT ANSWER QUESTIONS 459 // IN-DEPTH PROBLEMS 460 // FURTHER READING 460 // GLOSSARY 463 // INDEX 491

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC