Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 22.04.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
Cham : Springer International Publishing, 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 978-3-319-41879-7 (e-kniha)
ISBN 9783319418773 (print)
Springer Series in Materials Science, ISSN 0933-033X ; 247
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science..
001476252
Part I Modern Aspects of Fracture Mechanics in the Industrial Application of Polymers // 1 Time-Dependent Fracture Behaviour of Polymers at Impact and // Quasi-Static Loading Conditions 3 // R. Lach and W. Grellmann // 1.1 Comparison of Methods for the Determination of R-Curves // for Polymers at Impact Loading 4 // 1.2 Material Samples 5 // 1.2.1 Semicrystalline Polymers with Particle-Matrix // Structure: PP/EPR/PE Copolymers 5 // 1.2.2 Short-Glass Fibre (GF)-Reinforced Semicrystalline // Polymers: PP/GF 6 // 1.2.3 Nanophase-Separated Amorphous Polymers: // Binary Blends of PS-PB Block Copolymers 7 // 1.2.4 CTOD Rate Under Quasi-Static Test Conditions: // PP/EPR Blends 10 // 1.2.5 Influence of the Temperature: Amorphous // Polycarbonate (PC) 11 // 1.3 Crack Propagation Kinetics of Polymers at Impact Loading // Conditions 12 // 1.4 Discussion of Literature on Crack Propagation Kinetics.. 15 // 1.5 Stable Crack Propagation as Kinetic Phenomenon—An // Outlook 19 // References 20 // 2 Fatigue Crack Growth Behaviour of Epoxy Nanocomposites— // Influence of Particle Geometry 23 // M.H. Kothmann, G. Bakis, R. Zeiler, M. Ziadeh, J. Breu and V. Altstadt // vii // Contents // 2.1 Introduction 23 // 2.2 Experimental 25 // 2.2.1 Materials 25 // 2.2.2 Preparation of Nanocomposites 26 // 2.2.3 Characterisation Methods 26 // 2.3 Results and Discussion 27 // 2.3.1 Organophilisation of Nanoparticles 27 // 2.3.2 Morphology 27 // 2.3.3 Fatigue Crack Propagation Behaviour 28 // 2.4 Conclusion 30 // References 31 // 3 Fracture Mechanics Methods to Assess the Lifetime of // Thermoplastic Pipes 33 // F. Arbeiter, G. Pinter, R.W. Lang and A. Frank // 3.1 Failure Behaviour of Polymer Pipes 34 // 3.2 Fracture Mechanics Approach for Pipe Lifetime // Calculations 36 // 3.3 Crack Growth in Polyethylene 39 // 3.4 Extrapolation to Static Crack Growth Behaviour from Fatigue // Tests 41 //
3.5 Lifetime Calculation of PE Pipe Grades 44 // 3.6 Lifetime Calculation of a PE Pipe Grade at 80 °C Using // Cyclic CRB Tests 45 // 3.7 Conclusion and Outlook 48 // References 49 // 4 Thermographic Characterisation of the Deformation and // Fracture Behaviour of Polymers with High Time and Spatial Resolution 55 // M. Stein and K. Schneider // 4.1 Introduction 55 // 4.2 Experimental 56 // 4.2.1 Materials 56 // 4.2.2 Methods 57 // 4.3 Results 59 // 4.3.1 Thermomechanical Characterisation of PET 59 // 4.3.2 Thermomechanical Characterisation of PC 65 // 4.4 Discussion 67 // 4.4.1 Polycarbonate—Affine Deformation with Uniform // Energy Dissipation 68 // 4.4.2 Poly(Ethylene Terephthalate)—Localised Deformation and Complex Influence of Two // Phases 68 // 4.5 Conclusion 71 // References 71 // 5 Mechanical and Fracture Mechanical Properties of // Polymorphous Polypropylene 73 // A. Monami, B. Langer, J. Sadilek, J. Kucera and W. Grellmann // 5.1 Introduction 73 // 5.2 Experimental Part 75 // 5.3 Results and Discussion 77 // 5.3.1 Degree of Crystallinity 77 // 5.3.2 Influence of Cooling Rate on the Resistance Against Stable Crack Initiation and Crack // Growth 78 // 5.4 Conclusion 80 // References 80 // 6 Numerical Modelling of Damage Initiation and Failure of Long // Fibre-Reinforced Thermoplastics 83 // L. Schulenberg, D.-Z. Sun and T. Seelig // 6.1 Introduction 83 // 6.2 Problem Formulation 84 // 6.2.1 Experimental Observation 84 // 6.2.2 Microscopic Observation 84 // 6.2.3 Numerical Microstructural Model 86 // 6.3 Numerical Results 87 // 6.3.1 Single-Fibre Unit Cell Under Uniaxial Tension 87 // 6.3.2 Unit Cells Containing Three Fibres 88 // 6.3.3 Variations of the Fibre Overlapping Length and // Load Direction 90 // 6.4 Discussion 91 // 6.5 Summary 91 // References 92 //
Part II Advanced Structure-Sensitive Methods for Analysing Cracks and Fracture Surfaces // 7 Characterisation of Polymers in the Scanning Electron // Microscope—From Low-Voi tage Surface Imaging to the 3D Reconstruction of Specimens 95 // A. Zankel, M. Nachtnebel, C. Mayrhofer, K. Wewerka and T. Müllner // 7.1 Introduction 95 // 7.2 Low-Voltage Mode of the SEM 96 // 7.3 Low-Vacuum Mode of the ESEM 97 // 7.4 The ESEM Mode 100 // x Contents // 7.5 Artefacts and Beam Damage 101 // 7.6 3D Information Using In Situ Ultramicrotomy 103 // 7.7 Conclusions 106 // References 107 // 8 3D Reconstruction of Cracks in Polymers—New Insight into the // Fracture Behaviour? 109 // M. Nachtnebel, A. Zankel, C. Mayrhofer, M. Gahleitner and P. Pölt // 8.1 Introduction 109 // 8.2 Preparation and Image Processing Ill // 8.3 Results and Discussion 112 // 8.4 Conclusion 117 // References 118 // 9 Determination of the Stable Crack Growth by Means of the // Fluorescence Adsorption-Contrast Method (3D-FAC Method) 121 // M. Kroll, ?. Langer and W. Grellmann // 9.1 Introduction 122 // 9.2 Experimental 123 // 9.2.1 Materials 123 // 9.2.2 ?-R-Curve Determination 124 // 9.3 Development of a Fluorescence Microscopy Procedure for // ?? Measurement 125 // 9.3.1 Fluorescent Penetration Dye Colouring 125 // 9.3.2 Optimisation of the Fluorescent Application // Process 126 // 9.3.3 Fluorescence Adsorption-Contrast Method (3D- // FAC Method) 129 // 9.4 Results and Discussion 133 // 9.5 Conclusions 135 // References 136 // 10 Acoustic Emission Analysis for Assessment of Damage Kinetics of // Short-Glass Fibre-Reinforced Thermoplastics—ESEM Investigations and Instrumented Charpy Impact Test 139 // M. Schoßig, A. Zankel, C. Bierögel, P. Pölt and W. Grellmann // 10.1 Introduction 140 // 10.2 Theoretical Background 141 // 10.2.1 Acoustic Emission (AE) Analysis 141 //
10.2.2 Frequency Analysis—Wavelet Transform (WT) 144 // 10.3 Experimental Details 145 // 10.3.1 In Situ Tensile Tests in ESEM Coupled with AE Measurement 145 // 10.3.2 Coupling ICIT and AE Analysis 147 // Contents // XI // 10.4 Results 149 // 10.4.1 ESEM Investigations—Coupling the In Situ // Tensile Test with AE Analysis 149 // 10.4.2 AE Measurements During ICIT 157 // 10.5 Summary 161 // References 162 // 11 The Fractography as a Tool in Failure Analysis - Possibilities and Limits 165 // I. Kotter and W. Grellmann // II. 1 Introduction 165 // 11.2 Fractography—Fracture Surface Structures 166 // 11.2.1 Waves and Grid Lines 166 // 11.2.2 Fracture Parabola Respectively U- or V-Shaped // Ramps 167 // 11.2.3 Ramps, Bars or Steps 169 // 11.2.4 Example: Fracture of a Multi-Layer Pipe 169 // 11.3 Limits of Validity of the Fractography for Filled and Reinforced Plastics 171 // 11.4 Summary 173 // References 174 // Part III Fracture Mechanics and Related Methods for Analysing the Fracture Safety and Lifetime of Plastic Pipe Materials // 12 Slow Crack Growth of Polyethylene—Accelerated and Alternative Test Methods 177 // B. Gerets, M. Wenzel, K. Engelsmg and M. Bastian // 12.1 Introduction 177 // 12.2 Slow Crack Growth 178 // 12.3 Test Methods to Determine Slow Crack Growth Behaviour of PE 178 // 12.3.1 Conventional Test Methods 178 // 12.3.2 Accelerated Test Methods: (Accelerated) Full Notch Creep Test (FNCT and aFNCT) 179 // 12.3.3 Alternative Test Methods: Strain Hardening Test (SHT) 182 // 12.3.4 Alternative Test Methods: Cracked Round Bar Test—CRB Test 185 // 12.4 Conclusions 186 // References 187 // 13 Polypropylene for Pressure Pipes—From Polymer Design to Long-Term Performance 189 // L. Boragno, H. Braun, A.M. Hartl and R.W. Lang // 13.1 Introduction PP Market Overview 189 // 13.2 Morphology and Polymorphism of PP 191 //
13.3 Short-Term Properties—Charpy and Pipe Falling Weight 192 // 13.4 From Microstructure to Final Properties 194 // 13.5 Influence of Processing 196 // 13.6 Long-Term Behaviour—Pressure Resistance and Slow Crack Growth in PP Materials 197 // 13.7 Conclusions 199 // References 200 // 14 Lifetime of Polyethylene (PE) Pipe Material—Prediction Using Strain Hardening Test 203 // E. Nezbedová, J. Hodan, J. Kotek, Z. Krulis, P. Hutar and R. Lach // 14.1 Introduction 203 // 14.2 Conventional Assessment of Long-Term Performance and Lifetime: The Pennsylvania Edge Notch Tensile Test and the Tensile Full Notch Creep Test 205 // 14.3 Accelerated Assessment of Long-Term Performance and Lifetime: The Strain Hardening Test 206 // 14.4 Results 207 // 14.5 Conclusions 209 // References 210 // 15 Influence of Welding and Composition on the Short-Term Stable Crack Propagation Through Polyolefin Single- and Bilayered Structures 211 // R. Lach, T. Krolopp, P. Hutar, E. Nezbedová and W. Grellmann // 15.1 Introduction 212 // 15.2 Experimental 212 // 15.2.1 Materials and Specimen Preparation 212 // 15.2.2 Equipment and Data Analysis 214 // 15.3 Results and Discussion 215 // 15.3.1 Influence of Specimens Shape, Orientation, Welding and Loading Speed on Stable Crack Initiation and Propagation Behaviour in SingleLayer Pipes Made from PE 100, PE 80 and PP Materials 215 // 15.3.2 Influence of Interlayers and Crack Propagation Direction on Stable Crack Initiation and Propagation Behaviour in ? flayer Pipes Made from PP Materials 220 // 15.4 Summary 224 // References 226 // 16 Influence of Different Welding Conditions of Polyolefin Pipes on Creep Crack Growth 229 // J. Mikula, P. Hutar, M. Ševcík, E. Nezbedová, R. Lach, W. Grellmann and L. Náhlík // 16.1 Introduction 230 // 16.2 Welding of Polyolefin Pipes 230 // 16.3 Material Properties of the Welded Region 231 //
16.4 Numerical Model Description 233 // 16.5 Location of Crack Initiation 234 // 16.6 Stress Intensity Factors for Dilferent Configurations 235 // 16.6.1 Influence of Material Inhomogeneity 235 // 16.6.2 Influence of the Weld Bead Radius 236 // 16.6.3 Influence of Different Weld Bead Shape 236 // 16.7 Crack Trajectories for Different Welds 238 // 16.8 Lifetime Prediction 239 // 16.9 Conclusion 239 // References 240 // 17 Epoxy Modifications—A Novel Sealing Material for // Rehabilitation of Pipe Joints 243 // C. Schoberleitner, T. Koch and V.-M. Archodoulaki // 17.1 Introduction 244 // 17.2 Experimental Section 245 // 17.3 Results and Discussion 247 // 17.4 Conclusion 251 // References 252 // Part IV Deformation Behaviour and Fracture Mechanics // Characteristics of Polymer Films and Adhesive Systems // 18 Approaches to Characterise the Mechanical Properties of Films // and Elastomers 257 // K. Reineke and W. Grellmann // 18.1 Introduction 257 // 18.2 Experimental Opportunities of Mechanical Films and // Elastomers Testing 258 // 18.2.1 Conventional Tensile and Notched Impact Test // After ISO 8256 258 // 18.2.2 Instrumented Notched Tensile Impact Test 259 // 18.2.3 Instrumented Puncture Impact Test 260 // 18.2.4 Tear Test 261 // 18.2.5 Peel Tests 262 // 18.3 Examples of Use 264 // 18.3.1 Assessment of the Toughness Properties of Elastomers 264 // XIV // Contents // 18.3.2 Influence of Chemical Loading on the Mechanical Properties of a Thermoplastic Film 265 // 18.3.3 Influence of Chemical Loading on the Toughness // Properties of Elastomers 266 // 18.3.4 Evaluation of a PE/PB-1 Peel System 267 // 18.4 Conclusions 269 // References 269 // 19 Fracture Mechanics Characterisation of Peelfihns 271 // M. Nase, M. Rennert, S. Henning, A. Zankel, ?. Naumenko and W. Grellmann // 19.1 Introduction 272 // 19.2 Experimental 274 // 19.3 Results and Discussion 276 // References 280 //
20 Fracture Mechanics Characterisation of Low-Adhesive Stretch Films 283 // M. Rennert, M. Nase, ?. Reineke, R. Lach and W. Grellmann // 20.1 Introduction 284 // 20.2 Experimental 286 // 20.2.1 Material and Composition of the Films 286 // 20.2.2 Cling Test According to ASTM D 5458 287 // 20.3 Results and Discussion 291 // 20.4 Conclusion 295 // References 295 // 21 Thermal Stability and Lifetime Prediction of an Epoxide // Adhesive System 297 // R. Tiefenthaller, R. Fluch, ?. Strauß and S. Hild // 21.1 Introduction 297 // 21.2 Materials and Methods 299 // 21.2.1 Material and Samples 299 // 21.2.2 Spectroscopic Techniques and Mechanical // Analyses 299 // 21.2.3 ?-Peel Test and Tensile Lap-Shear Test 300 // 21.3 Results and Discussion 300 // 21.3.1 Thermomechanical Analysis 300 // 21.3.2 ATR-IR Spectroscopy 301 // 21.3.3 Raman Spectroscopy and Thermogravimetric // Analysis 304 // 21.3.4 Lifetime Prediction: ?-Peel Test and Tensile Lap-Shear Test 304 // 21.4 Conclusions 309 // References 309 // Part V Fatigue Crack Propagation, Lifetime and Long-Term Mechanical Behaviour of Thermoplastics and Elastomers // 22 Morphology and Fatigue Behaviour of Short-Glass // Fibre-Reinforced Polypropylene 315 // M. Palmstingl, D. Salaberger and T. Koch // 22.1 Introduction 315 // 22.2 Analysis of Morphology of SFRP 316 // 22.3 Determination of Fatigue Behaviour 323 // References 331 // 23 Characterisation of the Deformation and Fracture Behaviour of Elastomers Under Biaxial Deformation 335 // K. Schneider, R. Calabro, R. Lombardi, C. Kipscholl, T. Horst, A. Schulze, S. Dedova and G. Heinrich // 23.1 Introduction 335 // 23.2 Concept of the Biaxial Test Stand 336 // 23.3 Upgrading of a Biaxial Testing Method 338 // 23.3.1 New Clamping System for High Biaxial // Deformation 339 // 23.3.2 Specimen Geometry 340 // 23.3.3 Crack Propagation with the New Specimen 341 //
23.4 Material 341 // 23.5 Results 342 // 23.5.1 Material Behaviour Under Biaxial Load 342 // 23.5.2 Strain Amplification at the Crack Tip of a SENT // Sample 343 // 23.5.3 Crack Propagation Under Biaxial Load 344 // 23.5.4 Crack Propagation and Estimation of the Tearing Energy 345 // 23.6 Conclusion 348 // References 348 // 24 Influence of Thermal Ageing Process on the Crack Propagation // of Rubber Used for Tire Application 351 // R. Štocek, O. Kratina, P. Ghosh, J. Malác and R. Mukhopadhyay // 24.1 Introduction 351 // 24.2 Theoretical Background 354 // 24.2.1 Dynamic-Mechanical Analysis (DMA) 354 // 24.2.2 Fracture Crack Growth (FCG) 355 // 24.3 Experimental Details 356 // 24.3.1 Material Preparation 356 // 24.3.2 Ageing 356 // 24.3.3 DMA 357 // 24.3.4 FCG 357 // XVI // Contents // 24.4 Results and Discussion 358 // 24 Al DMA 358 // 24.4.2 FCG 360 // 24.5 Conclusion 362 // References 363 // 25 Development of Magnetorheological Elastomers (MREs) for Strength and Fatigue Resistance 365 // J. McIntyre and S. Jerrams // 25.1 Introduction 366 // 25.2 Preparation of Materials 368 // 25.3 Experimental Methodology 369 // 25.4 Results and Discussion 371 // 25.5 Summary and Conclusions 373 // References 374 // 26 Fibre-Reinforced Polyamides and the Influence of Water Absorption on the Mechanical and Thermomechanical // Behaviour 377 // P. Guttmann and G. Pilz // 26.1 Introduction and Objectives 378 // 26.2 Experimental 378 // 26.2.1 Materials 378 // 26.2.2 Experimental Procedure 379 // 26.3 Results and Discussion 380 // 26.3.1 Water Absorption 380 // 26.3.2 Dynamic-Mechanical Analysis (DMA) 381 // 26.3.3 Monotonous Tensile Tests 382 // 26.3.4 Media Creep Tests 385 // 26.4 Summary and Outlook 387 // References 388 // 27 Accelerated Measurement of the Long-Term Creep Behaviour of // Plastics 389 // F. Achereiner, K. Engelsing and M. Bastian // 27.1 Introduction 389 //
27.2 Principle of the Stepped Isothermal Method 391 // 27.3 Creep Testing Using SIM 392 // 27.4 Construction of a Master Curve 395 // 27.5 Assessment of the Method 397 // 27.6 Applications of SIM 398 // 27.7 Conclusions 400 // References 401 // Part VI Influence of Ageing on Mechanical and Fracture Mechanics Performance of Thermoplastics and Elastomers // 28 Hygrothermal Ageing of Injection-Moulded PA6/GF Materials // Considering Automotive Requirements 405 // T. Illing, M. Schoßig, C. Bierögel, ?. Langer and W. Grellmann // 28.1 Introduction 405 // 28.2 Material and Experiments 407 // 28.3 Results and Discussion 408 // 28.4 Summary and Conclusion 416 // References 417 // 29 Ageing of Polymer Materials—Testing, Modelling and Simulation // Considering Diffusion 421 // H. Baaser // 29.1 Introduction 421 // 29.2 Test Method 423 // 29.2.1 Change in Stiffness Over a Long Period of Time 423 // 29.2.2 Diffusion 423 // 29.3 Mechanical Model and Numerical Application 425 // 29.4 Computational Results 426 // 29.4.1 ?-Ring Application 426 // 29.4.2 Compression Test Specimen—Surface-Volume Ratio 426 // 29.5 Conclusions and Discussion 428 // References 429 // 30 Investigations of Elastomeric Seals—Low-Temperature // Performance and Ageing Behaviour 431 // M. Jaunich, A. Kömmling and D. Wolff // 30.1 Introduction 431 // 30.2 Behaviour at Low Temperatures 432 // 30.3 Methodology for the Ageing of Elastomeric Seals. 435 // 30.4 Conclusion 442 // References 442 // Part VII Mechanical Properties and Fracture of Elastomers— Influence of Composition, Reinforcement and Crosslinking // 31 Mechanical Reinforcement in a Polyisoprene Rubber by Hybrid Nanofillers 447 // S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, M.S. Galimberti and T. Ricco // 31.1 Introduction 447 // 31.2 Experimental 449 // 31.3 Results and Discussion 451 //
31.3.1 Transmission Electron Microscopy Analyses 451 // 31.3.2 Mechanical Behaviour 452 // 31.4 Conclusions 458 // References 458 // 32 Structure-Property Correlations of SSBR/BR Blends 461 // K. Reineke, W. Grellmann, S. Ilisch, S. Thiele and U. Ferner // 32.1 Introduction 462 // 32.2 Experimental 462 // 32.3 Results 464 // 32.3.1 Influence of the Composition on the Processing- // Related Properties 464 // 32.3.2 Influence of Composition of the Rubber Mixture on // the Physical Properties 467 // 32.4 Structure-Property Correlation 470 // 32.5 Conclusions 472 // References 473 // 33 Comparison Between Peroxide and Radiation Crosslinking of // Nitrile Rubber 475 // K. Bandzierz, D.M. Bielinski, G. Przybytniak, M. Jaszczak and A. Marzec // 33.1 Introduction 475 // 33.2 Experimental 477 // 33.2.1 Materials and Samples Preparation 477 // 33.2.2 Radiation Crosslinking 477 // 33.2.3 Peroxide Thermal Crosslinking 478 // 33.2.4 Crosslink Density Determination 478 // 33.2.5 Chain Scission and Crosslinking Ratio // Determination 479 // 33.2.6 Mechanical Properties Test 480 // 33.3 Results and Discussion 480 // 33.4 Conclusion 482 // References 482 // 34 Wood Flour as a Filler of Natural and Epoxidised Natural // Rubber 485 // A. Smejda-Krzewicka, W.M. Rzymski and P. Dmowska-Jasek // 34.1 Introduction 485 // 34.2 Materials and Methods 486 // 34.2.1 Materials 486 // 34.2.2 Sample Preparation 486 // 34.2.3 Testing Methods 487 // 34.3 Results and Discussion 487 // 34.3.1 Effect of Wood Flour Derived from Coniferous Trees (CF) on Properties of NR and ENR 487 // 34.3.2 Effect of Wood Flour Derived from Deciduous Coniferous Trees (DF) on Properties of NR and // ENR 489 // 34.4 Conclusion 491
35 Characterisation of the Ultimate Tensile Properties of Elastomers by a Dimensionless Hooke Number—A New Approach to Failure Envelopes 493 // N. Rennar and P. Kirchner // 35.1 Introduction 493 // 35.2 Theoretical Background 494 // 35.3 Experimental Part 497 // 35.3.1 Selection of Polymers and Recipes of Test // Compounds 497 // 35.3.2 Mixing Procedure, Crosslinking and Testing 497 // 35.4 Results and Discussion 498 // 35.5 Summary and Conclusions 505 // References 506 // 36 Thermomechanical Analysis Strategies for Elastomer // Components Under Dynamic Loading 507 // R. Behnke and M. Kaliske // 36.1 Introduction and Overview 507 // 36.2 Simultaneous Solution Scheme 509 // 36.3 Sequential Solution Scheme 511 // 36.4 Conclusion and Outlook 515 // References 516 // 37 Influence of Selected Silica Fillers on the Properties of Vulcanised Rubber Blends 517 // W.M. Rzymski, A. Smejda-Krzewicka, J. Rogoža and A. Ochenduszko // 37.1 Introduction 517 // 37.2 Materials and Methods 518 // 37.3 Results and Discussion 519 // 37.4 Conclusion 524 // References 524

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC