Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 09.12.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
Cham : Springer, 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 978-3-319-58205-4 (e-kniha)
ISBN 978-3-319-58204-7 (print)
Springer Series in Materials Science, ISSN 0933-033X ; 258
This volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning..
001476363
1 Envision 1 // 1.1 Evolution of Metalworking 2 // 1.2 Advent of Computers 4 // 1.3 Invention of 3D Printing 5 // 1.4 Key Take Away Points 6 // 2 Additive Manufacturing Metal, the Art of the Possible 7 // 2.1 AM Destinations: Novel Applications and Designs 7 // 2.2 Artistic 9 // 2.3 Personalized 11 // 2.4 Medical 13 // 2.5 Aerospace 16 // 2.6 Automotive 19 // 2.7 Industrial Applications Molds and Tooling 21 // 2.8 Remanufacture and Repair 22 // 2.9 Scanning and Reverse Engineering 24 // 2.10 Software 26 // 2.11 Engineered Structures 27 // 2.12 Functionally Graded Structures and Intermetallic Materials 28 // 2.13 Technology Demonstration 30 // 2.14 Hybrid Additive/Subtractive Systems 31 // 2.15 Key Take Away Points 32 // 3 On the Road to AM 35 // 3.1 You are Here —> 35 // 3.2 AM Metal Machines, the Vehicles to Take You There 37 // 3.3 Market and Technology Drivers 44 // 3.4 A Pocket Translator: The Language of AM 47 // 3.5 Key Take Away Points 48 // xiii // XIV // Contents // 4 Understanding Metal for Additive Manufacturing 49 // 4.1 Structure 50 // 4.1.1 Solid, Liquid, Gas, and Sometimes Plasma 50 // 4.1.2 Elements and Crystals 51 // 4.2 Physical Properties 54 // 4.2.1 Thermal Properties 54 // 4.2.2 Mechanical Properties 55 // 4.2.3 Electrical, Magnetic, and Optical Properties 56 // 4.3 Chemistry and Metallurgy 57 // 4.3.1 Physical Metallurgy 57 // 4.3.2 Ease of Fabrication 59 // 4.3.3 Process Metallurgy 59 // 4.3.4 Sintered Microstructures 60 // 4.3.5 Solidification Microstructures 62 // 4.3.6 Bulk Properties 68 // 4.4 Forms of Metal 69 // 4.4.1 Commercial Shapes 69 // 4.4.2 Metal Powder 71 // 4.4.3 Wire and Electrodes 77 // 4.4.4 Graded Materials 78 // 4.4.5 Composites, Intermetallic, and Metallic Glass 79 // 4.4.6 Recycled Metal 80 // 4.4.7 Recycle and Reuse of AM Metal Powders 81 // 4.5 Key Take Away Points 82 // 5 Lasers, Electron Beams, Plasma Arcs 85 //
5.1 The Molten Pool 85 // 5.2 Lasers 87 // 5.3 Electron Beams 90 // 5.4 Electric and Plasma Arcs 93 // 5.5 Hybrid Heat Sources 96 // 5.6 Key Take Away Points 96 // 6 Computers, Solid Models, and Robots 99 // 6.1 Computer-Aided Design 100 // 6.2 Computer-Aided Engineering 105 // 6.3 Computer-Aided Manufacturing 109 // 6.4 Computerized Numerical Control Ill // 6.5 Robotics 112 // 6.6 Monitoring and Real-Time Control 114 // 6.7 Remote Autonomous Operations 115 // 6.8 Key Take Away Points 116 // Contents // XV // 7 Origins of 3D Metal Printing 119 // 7.1 Plastic Prototyping and 3D Printing 120 // 7.2 Weld Cladding and 3D Weld Metal Buildup 123 // 7.3 Laser Cladding 125 // 7.4 Powder Metallurgy 126 // 7.5 Key Take Away Points 128 // 8 Current System Configurations 131 // 8.1 Laser Beam Powder Bed Fusion Systems 134 // 8.1.1 Advantages of PBF-L 135 // 8.1.2 Limitations of PBF-L 140 // 8.2 Laser Beam Directed Energy Deposition Systems 147 // 8.2.1 Advantages of DED-L 151 // 8.2.2 Limitations of DED-L 155 // 8.3 Additive Manufacturing with Electron Beams 157 // 8.3.1 Electron Beam Powder Bed Fusion Systems 157 // 8.4 Electron Beam-Directed Energy Deposition Systems 161 // 8.5 3D Metal Printing with Arc Welding Systems 166 // 8.6 Other AM Metal Technology 171 // 8.6.1 Binder Jet Technology 172 // 8.6.2 Plastic Tooling in Support of Metal Fabrication 174 // 8.6.3 Plastic and Wax Printing Combined with Casting 174 // 8.6.4 Ultrasonic Consolidation 175 // 8.6.5 Cold Spray Technology 175 // 8.6.6 Nano and Micro Scale Methods 176 // 8.7 Key Take Away Points 177 // 9 Inspiration to 3D Design 181 // 9.1 Inspired Design 181 // 9.2 Elements of Design 184 // 9.2.1 Material Selection 185 // 9.2.2 Process Selection 189 // 9.3 Solid Freeform Design 190 // 9.3.1 Design Freedom Offered by AM 194 // 9.3.2 AM Metal Design Constraints 198 // 9.4 Additional Design Requirements 201 //
9.4.1 Support Structure Design 201 // 9.4.2 Design of Fixtures, Jigs, and Tooling 203 // 9.4.3 Test Specimen Design 204 // 9.4.4 Prototype Design 204 // 9.4.5 Hybrid Design 205 // 9.5 Cost Analysis 205 // 9.6 Key Take Away Points 209 // XVI // Contents // 10 Process Development 211 // 10.1 Parameter Selection 211 // 10.2 Parameter Optimization 216 // 10.3 Specifying Pre-build and Monitoring Procedures 223 // 10.3.1 Monitoring of Process Quality 225 // 10.3.2 In-Process Part Quality Monitoring 226 // 10.4 Repair or Restart Procedures 227 // 10.5 Key Take Away Points 228 // 11 Building, Post-Processing, and Inspecting 229 // 11.1 ? uilding the Part 229 // 11.2 Post-Processing and Finishing 230 // 11.3 Bulk Deposit Defects 234 // 11.4 Dimensional Accuracy, Shrinkage, and Distortion 242 // 11.5 Inspection, Quality, and Testing of AM Metal Parts 242 // 11.5.1 Nondestructive Test Methods 243 // 11.5.2 Destructive Test Methods 246 // 11.5.3 Form, Fit, Function, and Proof Testing 249 // 11.6 Standards and Certification 250 // 11.7 Key Take Away Points 252 // 12 Trends in AM, Government, Industry, Research, Business 255 // 12.1 Government and Community 256 // 12.2 University and Corporate Research 264 // 12.3 Industrial Applications 268 // 12.4 Business and Commerce 275 // 12.5 Intellectual Property, Security, and Regulation 281 // 12.6 Social and Global Trends 287 // 12.6.1 Diifusion of Power 289 // 12.6.2 Demographics, Information, Mobility, Education, // Connectivity 289 // 12.6.3 Food, Water, Energy, Population Growth 290 // 12.7 Trends in Additive Manufacturing 290 // 12.7.1 Top AM Technology and Market Destinations 291 // 12.7.2 The First Steps Toward AM Metal 292 // Professional Society and Organization Links 293 // AM Machine and Service Resource Links 295 //
Appendix A: Safety in Configuring a 3D Metal Printing Shop 299 // Appendix B: Exercises in Metal Fusion 307 // Appendix C: OpenSCAD Programming Example 311 // Contents Xyji // Appendix D: 3D Printer Control Code Example 315 // Appendix E: Building an Arc Based 3D Shape Welding System 317 // Appendix F: Exercises in 3D Printing 319 // Appendix G: Score Chart of AM Skills 323 // Glossary 325 // References 335 // Index 339

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC