Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 16.11.2019. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
First edition.
Boca Raton, FL : CRC Press, 2016.
1 online zdroj : text file, PDF.
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781315371740 (e-book ; PDF)
ISBN 131537174X
ISBN 9781498703888
ISBN 1498703887
ISBN 9781315335407
ISBN 1315335409
ISBN 9781498703871
ISBN 1498703879
Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Chapter 1 Network Science Perspectives on Engineering Adaptation to Climate Change and Weather Extremes / Udit Bhatia Auroop R. Ganguly -- chapter 2 Structured Estimation in High Dimensions -- Applications in Climate / Andre R Goncalves Arindam Banerjee Vidyashankar Sivakumar Soumyadeep Chatterjee -- chapter 3 Spatiotemporal Global Climate Model Tracking / Scott McQuade Claire Monteleoni -- chapter 4 Statistical Downscaling in Climate with State-of-the-Art Scalable Machine Learning / Thomas Vandal Udit Bhatia Auroop R. Ganguly -- chapter 5 Large-Scale Machine Learning for Species Distributions / Reid A. Johnson Jason D. K. Dzurisin Nitesh V. Chawla -- chapter 6 Using Large-Scale Machine Learning to Improve Our Understanding of the Formation of Tornadoes / Amy McGovern Corey Potvin Rodger A. Brown -- chapter 7 Deep Learning for Very High-Resolution Imagery Classification / Sangram Ganguly Saikat Basu Ramakrishna Nemani Supratik Mukhopadhyay Andrew Michaelis Petr Votava Cristina Milesi Uttam Kumar -- chapter 8 Unmixing Algorithms -- A Review of Techniques for Spectral Detection and Classification of Land Cover from Mixed Pixels on NASA Earth Exchange / Uttam Kumar Cristina Milesi S. Kumar Raja Ramakrishna Nemani Sangram Ganguly Weile Wang Petr Votava Andrew Michaelis Saikat Basu -- chapter 9 Semantic Interoperability of Long-Tail Geoscience Resources over the Web / Mostafa M. Elag Praveen Kumar Luigi Marini Scott D. Peckham Rui Liu.
"From the Foreword:"While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by AshokSrivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest ...-.
I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences."--Vipin Kumar, University of MinnesotaLarge-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions.-.
The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book."--Provided by publisher..
OCLC-licensed vendor bibliographic record.
001478461
(OCoLC)993949309
(OCoLC-P)993949309

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC