Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 09.12.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]
1 online zdroj (xvi, vi, 7-246 stran)
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781315154503 (e-book : PDF)
ISBN 9781498773782 (vázáno)
Obsahuje bibliografické odkazy.
"From Internet of Things to Smart Cities: Enabling Technologies explores the information and communication technologies (ICT) needed to enable real-time responses to current environmental, technological, societal, and economic challenges. ICT technologies can be utilized to help with reducing carbon emissions, improving resource utilization efficiency, promoting active engagement of citizens, and more.This book aims to introduce the latest ICT technologies and to promote international collaborations across the scientific community, and eventually, the general public. It consists of three tightly coupled parts. The first part explores the involvement of enabling technologies from basic machine-to-machine communications to Internet of Things technologies. The second part of the book focuses on state of the art data analytics and security techniques, and the last part of the book discusses the design of human-machine interfaces, including smart home and cities.FeaturesProvides an extended literature review of relevant technologies, in addition to detailed comparison diagrams, making new readers be easier to grasp fundamental and wide knowledgeContains the most recent research results in the field of communications, signal processing and computing sciences for facilitating smart homes, buildings, and citiesIncludes future research directions in Internet of Things, smart homes, smart buildings, smart grid, and smart citiesPresents real examples of applying these enabling technologies to smart homes, transportation systems and citiesWith contributions from leading experts, the book follows an easy structure that not only presents timely research topics in-depth, but also integrates them into real world applications to help readers to better understand them."--Provided by publisher..
001478564
Preface xix // Section I From Machine-to-Machine Communications to Internet of Things // Chapter 1 ¦ From Machine-to-Machine Communications to Internet of Things: Enabling Communication Technologies 3 - Hamidreza Shariatmadari, Sassan Iraji, and Riku Jäntti // 1.1 INTRODUCTION 4 // 1.2 loT APPLICATIONS AND THEIR REQUIREMENTS 4 // 1.3 loT CONNECTIVITY LANDSCAPE 6 1.3.1 IEEE 802.15.4 7 1.3.2 WiFi 11 1.3.3 Bluetooth 12 // 1.4 1.3.4 RFID and Ambient Backscattering 14 1.3.5 Dedicated Short Range Communications 15 1.3.6 Low Power Wide Area Network 16 1.3.7 Cellular Systems 18 CHALLENGES AND SOLUTIONS FOR CONNECTIVITY IN 5G ERA 21 1.4.1 Low-power Consumption 21 1.4.2 Enhanced Coverage 22 1.4.3 Ultra-reliable Low-latency Communications 23 1.4.4 Massive Number of Devices 26 1.4.5 Handling Small Bursts of Data 27 // 1.5 CONCLUSIONS 28 // BIBLIOGRAPHY 30 // Chapter 2 ¦ Power Control for Reliable M2M Communication 35 - Ling Wang and Hongwei Zhang // 2.1 INTRODUCTION 36 // 2.1.1 History of Power Control in Cellular Networks 36 // 2.1.2 Objectives 38 // 2.1.3 Organization 39 // 2.2 M2M COMMUNICATION SYSTEMS 39 // 2.2.1 Co-channel Interference and Network Architecture 39 // 2.2.2 SINK Model and Link Reliability 40 // 2.2.3 Channel Dynamics and Statistical Models 42 // 2.2.4 Multiscale and Instantaneous Characteristics 45 // 2.3 POWER CONTROL THEORY 47 // 2.3.1 Feasible and optimal power control 48 // 2.3.2 Infeasibility of power control 49 // 2.4 POWER CONTROL APPROACHES FOR CONSTANT AND FADING CHANNELS 50 // 2.4.1 Conflict Graph-based Power Control for Constant Channels 50 // 2.4.2 Geometric Programming-based Power Control for Fading // Channels 51 // 2.5 DISCUSSION ON ADAPTIVE POWER CONTROL FOR M2M COMMUNICATION SYSTEMS 52 // 2.6 EXTENSIVE STUDIES ON POWER CONTROL 54 // 2.7 OPEN CHALLENGES AND EMERGING TRENDS 57 // BIBLIOGRAPHY 58 //
Chapter 3 ¦ Enabling Geo-centric Communication Technologies in Opportunistic Networks 61 - Yue Cao, De Mi, Tong Wang, and Lei Zhang // 3.1 INTRODUCTION 62 // 3.2 BACKGROUND 63 // 3.2.1 Opportunistic Networks (ONs) 63 // 3.2.2 Applications of ONs in Smart Cities 63 // 3.2.2.1 Vehicular Ad Hoc NETworks (VANETs) 63 // 3.2.2.2 Airborne Networks (ANs) 65 // 3.2.2.3 Mobile Social Networks (MSNs) 65 // 3.2.2.4 UnderWater Sensor Networks (UWSNs) 65 // 3.3 MOTIVATION AND CHALLENGES FOR GEOGRAPHIC ROUTING IN ONS 66 // 3.3.1 Geo-centric Technologies in Smart Cities 66 // 3.3.2 Introduction on Geographic Routing 66 // 3.3.3 Motivation for Geographie Routing in ONs 66 // 3.3.4 Challenges for Geographie Routing in ONs 67 // 3.4 TAXONOMY AND REVIEW OF GEOGRAPHIC ROUTING IN ONS 70 // 3.4.1 Destination Unawareness Class 71 // 3.4.2 Destination Awareness Class 72 // 3.4.2.1 Stationary Destination 72 // 3.4.2.2 Considering Mobile Destination via Real-time Geographic Information 76 // 3.4.2.3 Considering Mobile Destination via Historical Geographic Information 76 // 3.4.3 Hybrid Class 78 // 3.5 COMPARISON AND ANALYSIS 79 // 3.6 FUTURE DIRECTIONS 81 // 3.7 CONCLUSION 83 // BIBLIOGRAPHY 83 // Chapter 4 ¦ Routing Protocol for Low Power and Lossy loT Networks 89 - Xiyuan Liu, Zhengguo Sheng, and Changchuan Yin // 4.1 INTRODUCTION 90 // 4.2 RPL: AN OVERVIEW AND ITS KEY MECHANISMS 91 // 4.2.1 Routing Mechanism of RPL 91 // 4.2.2 Message Control Mechanism of RPL 92 // 4.2.3 RPL and Its Counterparts 94 // 4.3 RPL TOPOLOGY GENERATION METHODS 95 // 4.3.1 Objective Functions and Metrics 95 // 4.3.2 Multi-parents Consideration 97 // 4.4 RPL APPLICATIONS 98 // 4.4.1 RPL Application Overview 98 // 4.4.2 Application Scenarios 99 // 4.5 SECURITY ISSUES IN RPL 100 // 4.6 RPL PERFORMANCE EVALUATION IN LARGE-SCALE NETWORKS 103 // 4.6.1 Simulation Platforms 103 //
4.6.2 Framework Integration for OMNeT++ 103 // 4.6.3 Configuration Details 105 // 4.6.4 Simulation of Cross-layer RPL Routing 107 // 4.7 CHALLENGES AND PROSPECT 111 // 4.8 CONCLUSION 113 // BIBLIOGRAPHY 113 // Chapter 5 ¦ Resource Allocation for Wireless Communication Networks with RF Energy Harvesting 119 - Elena Boshkovska, Derrick Wing Kwan Ng, and Robert Schober // 5.1 INTRODUCTION 120 // 5.2 RECEIVER STRUCTURE 122 // 5.3 SWIFT COMMUNICATION NETWORKS 123 // 5.3.1 Channel Model 123 // 5.3.2 Non-linear Energy Harvesting Model 124 // 5.3.3 Channel State Information 127 // 5.3.4 Achievable System Data Rate 128 // 5.3.5 Problem Formulation and Solution 128 // 5.3.6 Numerical Example 132 // 5.4 WIRELESS POWERED COMMUNICATION NETWORKS 133 // 5.4.1 Channel Model 134 // 5.4.2 Problem Formulation and Solution 136 // 5.4.3 Numerical Example 138 // 5.5 CONCLUSION 140 // 5.6 APPENDIX 141 // 5.6.1 Proof of Theorem 1 141 // BIBLIOGRAPHY 143 // Section II Data Era: Data Analytics and Security // Chapter 6 ¦ Distributed Machine Learning in Big Data Era for Smart City 151 - Yuan Zuo, Yulei Wu, Geyong Min, Chengqiang Huang, and Xing Zhang // 6.1 INTRODUCTION 152 // 6.2 THE STOCHASTIC GRADIENT DESCENT (SGD) IN PARALLELIZATION 155 // 6.2.1 Parallelized SGD Based on MapReduce 157 // 6.2.2 Online SGD in Round-robin 157 // 6.2.3 HOGWILD! for “Lock-free” 158 // 6.2.4 AsySVRG for asynchronous SGD Variant 159 // 6.2.5 ASGD with Single-sided Communication 160 // 6.3 THE NEWTON METHOD IN PARALLELIZATION 160 // 6.3.1 A truncated Newton Method: The Trust Region Newton // Method (TRON) 162 // 6.3.2 The Distributed TRON Based on Spark and MPI 163 // 6.3.3 General Distributed Implementation of TRON 163 // 6.3.4 Matrix-vector Product Improvement for Inner Mechanism 164 // 6.4 THE PETUUM FRAMEWORK 164 //
6.5 THE CONVEX OPTIMIZATION DECOMPOSITION METHOD 166 // 6.5.1 An Implementation Example of ADMM 168 // 6.5.2 Other Work Relevant to Decomposition 169 // 6.6 SOME OTHER RESEARCH RELEVANT TO DISTRIBUTED APPLICATION 170 // 6.6.1 Evaluation of Parallel Logistic Regression 170 // 6.6.2 Conjugate Gradient Optimization 171 // 6.7 A CASE STUDY 171 // 6.8 CONCLUSIONS 172 // BIBLIOGRAPHY 172 // Chapter 7 ¦ Security in Smart Grids 179 - Julia Sanchez, Agusten Zaballos, Ramon Martin de Pozuelo, Guiomar Corral, and Alan Briones // 7.1 INTRODUCTION TO CYBERSECURITY 181 // 7.1.1 Key Security Aspects for Any System 181 // 7.1.2 Network Vulnerability Assessment 183 // 7.1.2.1 Security Vulnerabilities 183 // 7.1.2.2 Security Policies and Standards 184 // 7.1.2.3 Security Methodologies and Procedures 186 // 7.1.2.4 Security Assessments 187 // 7.1.2.5 Network Security Testing Tools 187 // 7.1.2.6 Summary 188 // 7.2 AUTOMATED SECURITY ASSESSMENT 189 // 7.2.1 Global Architecture of an Automated Security Assessment 189 // 7.2.1.1 Base System Module 190 // 7.2.1.2 Management Module 190 // 7.2.1.3 Analysis Module 191 // 7.2.1.4 Testing Modules 192 // 7.2.2 The Communications Protocol 192 // 7.2.3 Other Considerations 193 // 7.3 SECURITY CONCERNS, TRENDS AND REQUIREMENTS IN SMART GRIDS 194 // 7.3.1 Requirements of the Smart Grid 196 // 7.3.2 Smart Grid Security Requirements Definition 197 // 7.4 SECURITY IN A CLOUD INFRASTRUCTURE AND SERVICES FOR // SMART GRIDS 200 // 7.4.1 Security Concerns and Requirements in a Cloud Environment 200 // 7.4.1.1 Security Threats 202 // 7.4.1.2 Security Issues 202 // 7.4.1.3 Security Requirements 204 // 7.4.2 Use Case Analysis—FINESCE Cloud for Smart Grid Distribution 205 // 7.4.2.1 Use Case Description 205 // 7.4.2.2 Security Requirements Analysis 207 // 7.4.2.3 Security Audit 208 // 7.4.3 Summary 209 // 7.5 THE SMART GRID AS AN loT 210 //
7.6 TOWARDS A SECURE AND SUSTAINABLE SMART GRID MANAGEMENT 212 // 7.6.1 A Sustainable Smart Grid Management 212 // 7.6.2 Software-Defined Network 213 // 7.6.3 Service Composition Paradigm 213 // 7.6.4 The Proof of Concept: A First Approach to Orchestrate Secured Smart Metering 214 // 7.7 CONCLUSIONS 218 // 7.8 ACKNOWLEDGEMENTS 219 // BIBLIOGRAPHY 219 // Chapter 8 ¦ Secret Key Generation under Active Attacks 227 - Wenwen Tu and Lifeng Lai // 8.1 INTRODUCTION 228 // 8.2 BASIC MODELS FOR KEY GENERATION WITH A PASSIVE ADVERSARY 231 // 8.2.1 Key Generation with Side Information at the Adversary 231 // 8.2.2 Key Generation with a Helper 233 // 8.2.3 Basic Model for Key Generation in Wireless Setting 234 // 8.3 KEY GENERATION WITH PUBLIC DISCUSSION ATTACKED 235 // 8.3.1 Model Modification 235 // 8.3.2 All or Nothing Result 236 // 8.3.3 Efficiently Checking the Simulatability Condition 238 // 8.4 KEY GENERATION WITH CONTAMINATED SOURCES 239 // 8.4.1 Two-Way Relay Channel Model 239 // 8.4.2 Efficiency of the Key Generation Algorithm 241 // 8.4.3 Attack Strategy and Power Allocation 243 // 8.4.3.1 Optimal Attack Strategy 243 // 8.4.3.2 Optimal Attack Power Allocation 245 // 8.5 KEY GENERATION WITH A BYZANTINE HELPER 247 // 8.5.1 System Model with a Byzantine Helper 247 // 8.5.2 Key Generation Scheme against the Byzantine Helper 248 // 8.5.2.1 A Key Generation Scheme Example 249 // 8.6 CONCLUSION 251 // 8.7 ACKNOWLEDGEMENT 251 // BIBLIOGRAPHY 251 // Section III Towards Smart World from Interfaces to Homes to Cities // Chapter 9 ¦ Applying Human-Computer Interaction Practices to loT Prototyping 257 - Salim Haniff, Markku Turunen, and Roope Raisamo // INTRODUCTION 258 // 9.1.1 Internet of Things 258 // 9.1.2 Human-Computer Interaction 259 // HCI METHODOLOGY 265 // USE CASES 267 // 9.3.1 Smart Energy Monitoring 267 // 9.3.1.1 User’s Requirements 267 //
9.3.1.2 Hardware Implementation 268 // 9.3.1.3 Software Implementation 270 // 9.3.1.4 Discussion 273 // 9.3.2 Smart Lighting 276 // 9.3.2.1 User’s Requirements 277 // 9.3.2.2 Hardware Implementation 277 // 9.3.2.3 Software Implementation 279 // 9.3.2.4 Discussion 283 // 9.3.3 Seamless Home Automation 284 // 9.3.3.1 User’s Requirements 285 // 9.3.3.2 Hardware Implementation 286 // 9.3.3.3 Software Implementation 287 // 9.3.3.4 Discussion 289 // 9.4 CONCLUSION 290 // BIBLIOGRAPHY 291 // Chapter 10 | Inclusive Product Interfaces for the Future: Automotive, Aerospace, loT and Inclusion Design 295 - Patrick M. Langdon // 10.1 THE BACKGROUND TO THE PROBLEMS 296 // 10.1.1 The Ubiquity of loT Technology, and Importance of Inclusive // Design 297 // 10.1.2 What Is the Need for Inclusion? 298 // 10.1.3 The Inclusive Design Response 299 // 10.1.4 Health Induced and Situationally Induced Impairment 299 // 10.2 ADVANCED INTERACTION INTERFACES 300 // 10.2.1 The State of the Art 301 // 10.2.2 Solutions and Issues with User Modelling 301 // 10.3 THE INCLUSIVE ADAPTION APPROACH 302 // 10.4 CASE STUDY 1: FUTURE AUTOMOTIVE 303 // 10.4.1 Key Future HMI Design Elements 304 // 10.4.2 Visualisation of Key Concepts 307 // 10.5 CASE STUDY 2: FUTURE AEROSPACE 307 // 10.5.1 Need for Multimodal Solutions 308 // 10.5.2 Multimodal Interface Experiments 310 // 10.6 CASE STUDY 3: PREDICTIVE POINTING IN AUTOMOTIVE TOUCH SCREENS 310 // 10.7 CASE STUDY 4: ADAPTIVE MOBILE APPLICATIONS 312 // 10.7.1 The IU-??? Project 314 // 10.7.2 Mobile Interfaces 314 // 10.8 DISCUSSION 315 // BIBLIOGRAPHY 317 // Chapter 11 | Low Power Wide Area (LPWA) Networks for loT Applications 323 - Kan Zheng, Zhe Yang, Xiong Xiong, and Wei Xiang // 11.1 OVERVIEW ON 5G loT 324 // 11.2 OVERVIEW ON LOW POWER WIDE AREA NETWORKS (LPWANS) 326 // 11.2.1 Application Scenarios of LPWANs 326 // 11.2.2 Classification of LPWANs 328 //
11.2.2.1 LPWAN Based on NB-IoT 329 // 11.2.2.2 LPWAN Based on IEEE 802.15.4k 335 // 11.3 IMPLEMENTATION OF LPWAN BASED ON IEEE 802.15.4K 339 // 11.3.1 Access Point (AP) 339 // 11.3.2 Devices 340 // 11.3.3 Experimental Results 342 // 11.4 LPWA-BASED AIR QUALITY MONITORING SYSTEM 343 // 11.4.1 System Architecture 345 // 11.4.1.1 Sensing Layer 345 // 11.4.1.2 Network Layer 347 // 11.4.1.3 Application Layer 347 // 11.4.2 Experimental Results and Analysis 348 // 11.4.2.1 Experimental Configurations 348 // 11.4.2.2 Results and Analysis 349 // 11.5 CONCLUSION AND OUTLOOK 351 // BIBLIOGRAPHY 353 // Chapter 12 ¦ A Data-centered Fog Platform for Smart Living 357 - Jianhua Li, Jiong Jin, Dong Yuan, Marimuthu Palaniswami, and Klaus Moessner // 12.1 INTRODUCTION 358 // 12.1.1 Smart City 358 // 12.1.2 Internet of Things 360 // 12.1.3 Smart Living 362 // 12.1.4 Ad Hoc loT 362 // 12.1.5 Gateway or Proxy Based loT 363 // 12.1.6 Cloud Computing Based loT 364 // 12.1.7 Fog Computing 364 // 12.2 EHOPES ELEMENTS AND DATAFLOW 366 // 12.2.1 EHOPES and Dataflow 366 // 12.2.2 Summary 368 // 12.3 FOG PLATFORM FOR EHOPES 369 // 12.3.1 State of the Art 369 // 12.3.2 Fog Edge Node (FEN) 369 // 12.3.3 Fog Server (FS) 370 // 12.3.4 Foglet (Middleware) 371 // 12.4 CASE STUDY AND EVALUATION 371 // 12.4.1 The Scenario 371 // 12.4.2 The Simulation 373 // 12.4.3 Simulation Results 374 // 12.5 CONCLUSION 375 // BIBLIOGRAPHY 375 // Chapter 13 | Resources and Practical Factors in Smart Home and City 379 - Bo Tan, Liu Tao, and Ni Zhu // 13.1 INTRODUCTION 380 // 13.2 NOVEL USAGE OF RADIO RESOURCES 380 // 13.2.1 Current Situation and Challenges 380 // 13.2.2 Use of Outdoor Radio Signals 381 // 13.2.3 Use of Indoor Signals 383 // 13.2.4 The Trend 385 // 13.3 VIDEO RESOURCES 386 // 13.3.1 Introduction 386 // 13.3.2 Applications and Current Systems 387 // 13.3.3 Future Trends 389 //
13.4 PRACTICAL CONSIDERATIONS 390 // 13.4.1 Pervasive Sensing 390 // 13.4.2 Smart Cities in Reality 391 // BIBLIOGRAPHY 393 // Index 399
(OCoLC)993978439

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC