Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 19.12.2020. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
BK
Second edition
Oxford : Oxford University Press, 2010
xvi, 396 stran : ilustrace ; 25 cm

objednat
ISBN 978-0-19-957337-0 (brožováno)
Oxford master series in condensed matter physics ; 3
Obsahuje bibliografii na stranách 376-386 a rejstřík
001479071
Contents // 1 Introduction 1 // 1.1 Classification of optical processes 1 // 1.2 Optical coefficients 2 // 1.3 The complex refractive index and dielectric constant 6 // 1.4 Optical materials 9 // 1.4.1 Crystalline insulators and semiconductors 9 // 1.4.2 Glasses 12 // 1.4.3 Metals 13 // 1.4.4 Molecular materials 14 // 1.4.5 Doped glasses and insulators 16 // 1.5 Characteristic optical physics in the solid state 17 // 1.5.1 Crystal symmetry 18 // 1.5.2 Electronic bands 20 // 1.5.3 Vibronic bands 21 // 1.5.4 The density of states 21 // 1.5.5 Delocalized states and collective excitations 22 // 1.6 Microscopic models 23 // Chapter summary 24 // Further reading 25 // Exercises 25 // 2 Classical propagation 28 // 2.1 Propagation of light in a dense optical medium 28 // 2.1.1 Atomic oscillators 29 // 2.1.2 Vibrational oscillators 31 // 2.1.3 Free electron oscillators 32 // 2.2 The dipole oscillator model 33 // 2.2.1 The Lorentz oscillator 33 // 2.2.2 Multiple resonances 38 // 2.2.3 Comparison with experimental data 41 // 2.2.4 Local field corrections 43 // 2.3 The Kramers-Kronig relationships 44 // 2.4 Dispersion 46 // 2.5 Optical anisotropy 48 // 2.5.1 Natural anisotropy: birefringence 48 // 2.5.2 Induced optical anisotropy 53 // 2.6 Optical chirality 55 // Chapter summary 57 // Further reading 58 // xii Contents // Exercises 58 // 3 Interband absorption 62 // 3.1 Interband transitions 62 // 3.2 The transition rate for direct absorption 64 // 3.3 Band edge absorption in direct gap semiconductors
68 // 3.3.1 The atomic physics of the interband transitions 68 // 3.3.2 The band structure of a direct gap IH-V semiconductor 69 // 3.3.3 The joint density of states 71 // 3.3.4 The frequency dependence of the band edge absorption 72 // 3.3.5 The Franz-Keldysh effect 74 // 3.3.6 Band edge absorption in a magnetic field 75 // 3.3.7 Spin injection 77 // 3.4 Band edge absorption in indirect gap semiconductors 79 // 3.5 Interband absorption above the band edge 82 // 3.6 Measurement of absorption spectra 84 // 3.7 Semiconductor photodetectors 86 // 3.7.1 Photodiodes 87 // 3.7.2 Photoconductive devices 89 // 3.7.3 Photovoltaic devices 90 // Chapter summary 91 // Further reading 92 // Exercises 92 // 4 Excitons 95 // 4.1 The concept of excitons 95 // 4.2 Free excitons 96 // 4.2.1 Binding energy and radius 96 // 4.2.2 Exciton absorption 98 // 4.2.3 Experimental data for free excitons in GaAs 100 // 4.3 Free excitons in external fields 101 // 4.3.1 Electric fields 102 // 4.3.2 Magnetic fields 103 // 4.4 Free excitons at high densities 104 // 4.5 Frenkel excitons 107 // 4.5.1 Rare gas crystals 107 // 4.5.2 Alkali halides 108 // 4.5.3 Molecular crystals 108 // Chapter summary 109 // Further reading 110 // Exercises 110 // 5 Luminescence 113 // 5.1 Light emission in solids 113 // 5.2 Interband luminescence 115 // 5.2.1 Direct gap materials 116 // Contents xiii // 5.2.2 Indirect gap materials 117 // 5.3 Photoluminescence 118 // 5.3.1 Excitation and relaxation 118 // 5.3.2 Low carrier densities
120 // 5.3.3 Degeneracy 121 // 5.3.4 Optical orientation 123 // 5.3.5 Photoluminescence spectroscopy 125 // 5.4 Electroluminescence 126 // 5.4.1 General principles of electroluminescent devices 126 // 5.4.2 Light-emitting diodes 129 // 5.4.3 Diode lasers 130 // 5.4.4 Cathodoluminescence 135 // Chapter summary 136 // Further reading 137 // Exercises 138 // 6 Quantum confinement 141 // 6.1 Quantum-confined structures 141 // 6.2 Growth and structure of quantum wells 144 // 6.3 Electronic levels 146 // 6.3.1 Separation of the variables 146 // 6.3.2 Infinite potential wells 147 // 6.3.3 Finite potential wells 149 // 6.4 Quantum well absorption and excitons 152 // 6.4.1 Selection rules 152 // 6.4.2 Two-dimensional absorption 154 // 6.4.3 Experimental data 156 // 6.4.4 Excitons in quantum wells 157 // 6.4.5 Spin injection in quantum wells 158 // 6.5 The quantum-confined Stark effect 160 // 6.6 Optical emission 164 // 6.7 Intersubband transitions 166 // 6.8 Quantum dots 167 // 6.8.1 Quantum dots as artificial atoms 167 // 6.8.2 Colloidal quantum dots 170 // 6.8.3 Self-assembled epitaxial quantum dots 172 // Chapter summary 174 // Further reading 175 // Exercises 176 // 7 Free electrons 180 // 7.1 Plasma reflectivity 180 // 7.2 Free carrier conductivity 183 // 7.3 Metals 185 // 7.3.1 The Drude model 185 // 7.3.2 Interband transitions in metals 188 // 7.4 Doped semiconductors 191 // 7.4.1 Free carrier reflectivity and absorption 191 // xiv Contents // 7.4.2 Impurity absorption 196 // 7.5
Plasmons 198 // 7.5.1 Bulk plasmons 198 // 7.5.2 Surface plasmons 202 // 7.6 Negative refraction 207 // Chapter summary 209 // Further reading 210 // Exercises 211 // 8 Molecular materials 214 // 8.1 Introduction to organic materials 214 // 8.2 Optical spectra of molecules 216 // 8.2.1 Electronic states and transitions 216 // 8.2.2 Vibronic coupling 218 // 8.2.3 Molecular configuration diagrams 219 // 8.2.4 The Franck-Condon principle 221 // 8.2.5 Experimental spectra 224 // 8.3 Conjugated molecules 227 // 8.3.1 Small conjugated molecules 227 // 8.3.2 Conjugated polymers 229 // 8.4 Organic opto-electronics 232 // 8.5 Carbon nanostructures 235 // 8.5.1 Introduction 235 // 8.5.2 Graphene 236 // 8.5.3 Carbon nanotubes 237 // 8.5.4 Carbon bucky balls 241 // Chapter summary 243 // Further reading 244 // Exercises 245 // 9 Luminescence centres 247 // 9.1 Vibronic absorption and emission 247 // 9.2 Colour centres 250 // 9.2.1 F-centres in alkali halides 250 // 9.2.2 NV centres in diamond 253 // 9.3 Paramagnetic impurities in ionic crystals 255 // 9.3.1 The crystal-field effect and vibronic coupling 255 // 9.3.2 Rare-earth ions 257 // 9.3.3 Transition-metal ions 259 // 9.4 Solid-state lasers and optical amplifiers 261 // 9.5 Phosphors 264 // Chapter summary 266 // Further reading 267 // Exercises 268 // 10 Phonons 271 // 10.1 Infrared active phonons 271 // 10.2 Infrared reflectivity and absorption in polar solids 273 // Contents XV // 10.2.1 The classical oscillator model 273 // 10.2.2
The Lyddane-Sachs-Teller relationship 276 // 10.2.3 Reststrahlen 277 // 10.2.4 Lattice absorption 278 // 10.3 Polaritons 281 // 10.4 Polarons 282 // 10.5 Inelastic light scattering 285 // 10.5.1 General principles of inelastic light scattering 286 // 10.5.2 Raman scattering 287 // 10.5.3 Brillouin scattering 289 // 10.6 Phonon lifetimes 290 // Chapter summary 292 // Further reading 292 // Exercises 293 // 11 Nonlinear optics 295 // 11.1 The nonlinear susceptibility tensor 295 // 11.2 The physical origin of optical nonlinearities 298 // 11.2.1 Non-resonant nonlinearities 299 // 11.2.2 Resonant nonlinearities 302 // 11.3 Second-order nonlinearities 305 // 11.3.1 Nonlinear frequency mixing 305 // 11.3.2 Effect of crystal symmetry 308 // 11.3.3 Phase matching 310 // 11.3.4 Electro-optics 313 // 11.4 Third-order nonlinear effects 317 // 11.4.1 Overview of third-order phenomena 317 // 11.4.2 Frequency tripling 318 // 11.4.3 The optical Kerr effect and the nonlinear refractive index 318 // 11.4.4 Stimulated Raman scattering 321 // 11.4.5 Isotropic third-order nonlinear media 321 // 11.4.6 Nonlinear propagation in optical fibres and solitone 322 // 11.4.7 Resonant nonlinearities in semiconductors 324 // Chapter summary 326 // Further reading 327 // Exercises 328 // A Electromagnetism in dielectrics 330 // A.l Electromagnetic fields and Maxwell’s equations 330 // A. 2 Electromagnetic waves 333 // Further reading 339 // ? Quantum theory of radiative absorption and emission 340 // B. l
Einstein coefficients 340 // B.2 Quantum transition rates 344 // B.3 Selection rules 347 // Further reading 349 // xvi Contents // C Angular momentum in atomic physics 350 // C.l Angular momentum in quantum mechanics 350 // C.2 Notation for atomic angular momentum states 351 // C. 3 Sub-level splitting 352 // Further reading 353 // D Band theory 354 // D. l Metals, semiconductors, and insulators 354 // D.2 The nearly free electron model 356 // D.3 Example band structures 359 // Further reading 362 // E Semiconductor p—i—n diodes 363 // Further reading 365 // Solutions to exercises 366 // Bibliography 376 // Symbols 387 // Index 389

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC