Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 09.12.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
Third edition
Hoboken, New Jersey : John Wiley & Sons Inc., [2016]
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781119114154 (e-kniha ; ePub)
ISBN 9781119114208 (e-kniha ; pdf)
ISBN 9781119113805 (vázáno)
Obsahuje bibliografie a rejstřík
In the search for economical and environmentally friendly energy sources, fuel cell technology takes center stage. Since its introduction in 2005, Fuel Cell Fundamentals has provided a solid introduction to the essential science and engineering behind this technology, with emphasis on the foundational scientific principles that apply to fuel cell types. Fully updated with the latest technological advances, relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems, this new edition also features worked problems, illustrations, and real-world application examples. Instruction is presented in two parts: Fuel Cell Principles examines the basics of fuel cell physics, including fuel cell thermodynamics, kinetics, transport, and modeling. Fuel Cell Technology explores fuel cell types, the latest electrical and hydrogen technology, and the design of systems and subsystems based on application, performance, cost, and environmental impact. This book covers the “how” and “why” of fuel cell technology. If you are a graduate or advanced undergraduate student in engineering or material science, Fuel Cell Fundamentals helps prepare you to pursue this booming field..
Popsáno podle tištěné verze
001479500
PREFACE xi // ACKNOWLEDGMENTS xiii // NOMENCLATURE xvii // 1 FUEL CELL PRINCIPLES // 1 Introduction 3 // 1.1 What Is a Fuel Cell? 3 1.2 A Simple Fuel Cell 6 1.3 Fuel Cell Advantages 8 // 1.4 Fuel Cell Disadvantages 11 // 1.5 Fuel Cell Types 12 // 1.6 Basic Fuel Cell Operation 14 // 1.7 Fuel Cell Performance 18 // 1.8 Characterization and Modeling 20 // 1.9 Fuel Cell Technology 21 // 1.10 Fuel Cells and the Environment 21 // 1.11 Chapter Summary 22 Chapter Exercises 23 // 2 Fuel Cell Thermodynamics 25 // 2.1 Thermodynamics Review 25 // 2.2 Heat Potential of a Fuel: Enthalpy of Reaction 34 // 2.3 Work Potential of a Fuel: Gibbs Free Energy 37 // 2.4 Predicting Reversible Voltage of a Fuel Cell under Non-Standard-State Conditions 47 // 2.5 Fuel Cell Efficiency 60 // 2.6 Thermal and Mass Balances in Fuel Cells 65 // 2.7 Thermodynamics of Reversible Fuel Cells 67 // 2.8 Chapter Summary 71 Chapter Exercises 72 // 3 Fuel Cell Reaction Kinetics 77 // 3.1 Introduction to Electrode Kinetics 77 // 3.2 Why Charge Transfer Reactions Have an Activation Energy 82 // 3.3 Activation Energy Determines Reaction Rate 84 // 3.4 Calculating Net Rate of a Reaction 85 // 3.5 Rate of Reaction at Equilibrium: Exchange Current Density 86 // 3.6 Potential of a Reaction at Equilibrium: Galvani Potential 87 // 3.7 Potential and Rate: Butler-Volmer Equation 89 // 3.8 Exchange Currents and Electrocatalysis: How to Improve Kinetic Performance 94 // 3.9 Simplified Activation Kinetics: Tafel Equation 97 // 3.10 Different Fuel Cell Reactions Produce Different Kinetics 100 // 3.11 Catalyst-Electrode Design 103 // 3.12 Quantum Mechanics: Framework for Understanding Catalysis in Fuel Cells 104 // 3.13 The Sabatier Principle for Catalyst Selection 107 // 3.14 Connecting the Butler-Volmer and Nernst Equations (Optional) 108 // 3.15 Chapter Summary 112 Chapter Exercises 113 //
4 Fuel Cell Charge Transport 117 // 4.1 Charges Move in Response to Forces 117 // 4.2 Charge Transport Results in a Voltage Loss 121 // 4.3 Characteristics of Fuel Cell Charge Transport Resistance 124 // 4.4 Physical Meaning of Conductivity 128 // 4.5 Review of Fuel Cell Electrolyte Classes 132 // 4.6 More on Diffusivity and Conductivity (Optional) 153 // 4.7 Why Electrical Driving Forces Dominate Charge Transport (Optional) 160 // 4.8 Quantum Mechanics-Based Simulation of Ion Conduction in Oxide Electrolytes (Optional) 161 // 4.9 Chapter Summary 163 Chapter Exercises 164 // 5 Fuel Cell Mass Transport 167 // 5.1 Transport in Electrode versus Flow Structure 168 // 5.2 Transport in Electrode: Diffusive Transport 170 // 5.3 Transport in Flow Structures: Convective Transport 183 // 5.4 Chapter Summary 199 Chapter Exercises 200 // 6 Fuel Cell Modeling 203 // 6.1 Putting It All Together: A Basic Fuel Cell Model 203 // 6.2 AID Fuel Cell Model 206 // 6.3 Fuel Cell Models Based on Computational Fluid Dynamics (Optional) 227 // 6.4 Chapter Summary 230 Chapter Exercises 231 // 7 Fuel Cell Characterization 237 // 7.1 What Do We Want to Characterize? 238 // 7.2 Overview of Characterization Techniques 239 // 7.3 In Situ Electrochemical Characterization Techniques 240 // 7.4 Ex Situ Characterization Techniques 265 // 7.5 Chapter Summary 268 Chapter Exercises 269 // II FUEL CELL TECHNOLOGY // 8 Overview of Fuel Cell Types 273 // 8.1 Introduction 273 // 8.2 Phosphoric Acid Fuel Cell 274 // 8.3 Polymer Electrolyte Membrane Fuel Cell 275 // 8.4 Alkaline Fuel Cell 278 // 8.5 Molten Carbonate Fuel Cell 280 // 8.6 Solid-Oxide Fuel Cell 282 // 8.7 Other Fuel Cells 284 // 8.8 Summary Comparison 298 // 8.9 Chapter Summary 299 Chapter Exercises 301 // 9 PEMFC and SOFC Materials 303 // 9.1 PEMFC Electrolyte Materials 304 // 9.2 PEMFC Electrode/Catalyst Materials 308 //
9.3 SOFC Electrolyte Materials 317 // 9.4 SOFC Electrode/Catalyst Materials 326 // 9.5 Material Stability, Durability, and Lifetime 336 // 9.6 Chapter Summary 340 Chapter Exercises 342 // 10 Overview of Fuel Cell Systems 347 // 10.1 Fuel Cell Subsystem 348 // 10.2 Thermal Management Subsystem 353 // 10.3 Fuel Delivery/Processing Subsystem 357 // 10.4 Power Electronics Subsystem 364 // 10.5 Case Study of Fuel Cell System Design: Stationary Combined Heat and Power Systems 369 // 10.6 Case Study of Fuel Cell System Design: Sizing a Portable Fuel Cell 383 // 10.7 Chapter Summary 387 Chapter Exercises 389 // 11 Fuel Processing Subsystem Design 393 // 11.1 Fuel Reforming Overview 394 // 11.2 Water Gas Shift Reactors 409 // 11.3 Carbon Monoxide Clean-Up 411 // 11.4 Reformer and Processor Efficiency Losses 414 // 11.5 Reactor Design for Fuel Reformers and Processors 416 // 11.6 Chapter Summary 417 Chapter Exercises 419 // 12 Thermal Management Subsystem Design // 12.1 Overview of Pinch Point Analysis Steps 424 // 12.2 Chapter Summary 440 // Chapter Exercises 441 // 13 Fuel Cell System Design // 13.1 Fuel Cell Design Via Computational Fluid Dynamics 447 // 13.2 Fuel Cell System Design: A Case Study 462 // 13.3 Chapter Summary 476 // Chapter Exercises 477 // 14 Environmental Impact of Fuel Cells // 481 // 14.1 Life Cycle Assessment 481 // 14.2 Important Emissions for LCA 490 // 14.3 Emissions Related to Global Warming 490 // 14.4 Emissions Related to Air Pollution 502 // 14.5 Analyzing Entire Scenarios with LCA 507 // 14.6 Chapter Summary 510 Chapter Exercises 511 // A Constants and Conversions 517 // B Thermodynamic Data 519 // C Standard Electrode Potentials at 25°C 529 // D Quantum Mechanics 531 // D.l Atomic Orbitals 533 // D.2 Postulates of Quantum Mechanics 534 // D.3 One-Dimensional Electron Gas 536 // D.4 Analogy to Column Buckling 537 // D.5 Hydrogen Atom 538 //
D.6 Multielectron Systems 540 // D.7 Density Functional Theory 540
(OCoLC)920944763

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC