Úplné zobrazení záznamu

Toto je statický export z katalogu ze dne 09.12.2023. Zobrazit aktuální podobu v katalogu.

Bibliografická citace

.
0 (hodnocen0 x )
EB
EB
ONLINE
Hoboken, New Jersey : John Wiley & Sons, Inc., 2017
1 online zdroj
Externí odkaz    Plný text PDF 
   * Návod pro vzdálený přístup 


ISBN 9781118888964 (e-kniha)
ISBN 9781118889022 (e-kniha)
ISBN 9781118888766
ISBN 9781118888926 (vázáno)
Tištěné vydání: Mechanism of plant hormone signaling under stress. Hoboken, New Jersey : John Wiley & Sons, Inc., 2017 ISBN 9781118888926
Obsahuje bibliografie a rejstřík
Popsáno podle dat dodaných poskytovatelem
* Auxin * Gibberellins
001479535
About the Editor xv // List of Contributors xvii // Preface xxiii // Part I Action of Phytohormones in Stress i // 1 Auxin as a Mediator of Abiotic Stress Responses 3 - Branko Salopek-Sondi, Iva Pavlovic, Ana Šmolko, and Dunja Samec // 1.1 Introduction 3 // 1.2 Auxin: A Short Overview of Appearance, Metabolism, Transport, and Analytics 4 // 1.2.1 De Novo Synthesis 4 // 1.2.2 Reversible and Irreversible Conjugation Pathways 5 // 1.2.3 IBA to IAA Conversion 6 // 1.2.4 Degradation Pathways 6 // 1.2.5 Polar Auxin Transport 7 // 1.2.6 Analytical Methods in Auxin Identification and Quantification 7 // 1.3 How Auxin Homeostasis Shifts with Diverse Abiotic Stresses 9 // 1.3.1 How the Auxin Pool is Affected by Abiotic Stress? 9 // 1.3.2 Transcription of Auxin Metabolic Genes under Abiotic Stress 10 // 1.3.3 What Can We Learn from Functional Analysis Research? 11 // 1.4 How Does Auxin Signaling Respond to Abiotic Stress? 13 // 1.4.1 Brief Overview of Auxin Perception and Signaling 13 // 1.4.2 Auxin Signaling Attenuation under Stress Conditions: The Importance of miRNA Driven Post-Transcriptional Regulation 14 // 1.5 Auxin and Redox State During Abiotic Stress 15 // 1.6 Auxin-Stress Hormones Crosstalk in Stress Conditions 18 // 1.6.1 Auxin-ABA Crosstalk 18 // 1.6.2 Auxin-JA Crosstalk 19 // 1.6.3 Auxin-Ethylene Crosstalk 20 // 1.6.4 Auxin-SA Crosstalk 20 // 1.7 Promiscuous Protein Players of Plant Adaptation: Biochemical and Structural Views 21 // 1.7.1 IAR3 Auxin Amidohydrolase 21 // 1.7.2 GH3 Auxin Conjugate Synthetases 23 // 1.8 Conclusion 24 // Acknowledgment 24 References 25 // 2 Mechanism of Auxin Mediated Stress Signaling in Plants 37 - Lekshmy S, Krishna G.K., Jha S.K., and Sairam R.K. // 2.1 Introduction 37 // 2.2 Auxin Biosynthesis, Homeostasis, and Signaling 37 // 2.3 Auxin Mediated Stress Responses in Model and Crop Plants 40 //
2.4 Regulation of Root System Architecture under Drought and Nutrient Stresses 41 // 2.5 Conclusions and Future Perspectives 45 // References 46 // 3 Integrating the Knowledge of Auxin Homeostasis with Stress Tolerance in Plants 53 - Shivani Saini, Isha Sharma, and Pratap Kumar Rati Introduction 53 // Auxin Biosynthesis and its Role in Plant Stress 53 // Auxin Transport and its Role in Plant Stress 57 // Auxin Signaling and its Role in Plant Stress 60 // Auxin Conjugation and Degradation and its Role in Plant Stress 61 // Conclusions 63 // References 63 // 4 Cytokinin Signaling in Plant Response to Abiotic Stresses 71 - Nguyen Binh And Thu, Xuan Lan Thi Hoang, Mai Thuy True, Saad Sulieman, Nguyen Phuong Thao, and Lam-Son Phan Tran // Introduction 71 // CK Metabolism 72 // CK Components and Regulatory Functions 72 // CK Metabolism, Perception, and Signal Transduction 75 // CK Metabolism 75 // CK Perception and Signal Transduction 77 // The Components of the CK Signaling Pathway 77 // The CK Receptor Histidine Kinases 77 // Histidine Phosphotransfer Proteins 79 // Response Regulators 80 // CK Signaling in Plant Responses to the Abiotic Stresses 81 // Genetic Engineering of CK Content for Improvement of Plant Tolerance to // Abiotic Stresses 82 // Conclusions 88 // Acknowledgments 88 // References 88 // 5 Crosstalk Between Gibberellins and Abiotic Stress Tolerance Machinery in Plants 101 - Ashutosh Sharon, Jeremy Dkhar, Sneh Lata Singla-Pareek, and Ashwani Pareek // 5.1 Introduction 101 // 5.2 Gibberellins: Biosynthesis, Transport, and Signaling 102 // 5.3 GA Metabolism and Signaling During Abiotic Stress 106 // 5.3.1 Salinity Stress Induces GA2ox and GA20ox Gene Expression 106 // 5.3.2 Reduced GA Confers Tolerance to Drought Stress 111 // 5.3.3 Role of GA in Cold and Heat Stresses 112 // 5.4 Crosstalk between GA and Other Plant Hormones in Response to Abiotic Strsses 114 //
5.4.1 Crosstalk between GAs and Ethylene During Abiotic Stress 114 // 5.4.2 Crosstalk Between GAs and Abscisic Acid During Abiotic Stress 115 // 5.4.3 Crosstalk Between GAs and SA During Abiotic Stress 116 // 5.4.4 Crosstalk Between GAs and Jasmonic Acid During Abiotic Stress 116 // 5.5 Applications in Crop Improvement 117 // 5.5.1 Flower Development 117 // 5.5.2 Fruit Development 118 // 5.5.3 Brewing Industry 118 // 5.6 Conclusion 118 Acknowledgment 119 References 119 // 6 The Crosstalk of GA and JA: A Fine-Tuning of the Balance of Plant Growth, Development, and Defense 127 - Yuge Li and Xingliang Hou // 6.1 Introduction 127 // 6.2 GA Pathway in Plants 128 // 6.3 JA Pathway in Plants 129 // 6.4 GA Antagonizes JA-Mediated Defense 131 // 6.5 JA Inhibits GA-Mediated Growth 133 // 6.6 GA and JA Synergistically Mediate Plant Development 134 // 6.7 Conclusions 136 Acknowledgments 136 References 136 // 7 Jasmonate Signaling and Stress Management in Plants 143 - Sirhindi Geetika, Mushtaq Ragia, Sharma Poonam, Kaur Harpreet, and Ahmad Mir Mudaser // 7.1 Introduction 143 // 12 JA Biosynthesis and Metabolic Fate 144 // 13 JA Signaling Network 146 // 7.4 Physiological Role of JAs 151 // 7.4.1 JA in Seed Germination 151 // 7.4.2 JA in Root Growth 151 // 7.4.3 JA in Tuber Formation 152 // 7.4.4 JA in Trichome Development 152 // viii Contents // 7.4.5 JA in Flower and Seed Development 153 // 7.4.6 JA in Abscission and Senescence 153 // 7.4.7 JA in Photosynthesis Regulation 154 // 7.4.8 JA in Secondary Metabolism 155 // 7.5 JA Regulated Stress Responses 156 // 7.5.1 JA in Antioxidant Management and Reactive Oxygen Species Homeostasis 156 // 7.5.2 JA in Biotic Stress 157 // 7.5.3 JA in Abiotic Stresses 157 // 7.6 Conclusion 159 References 159 // 8 Mechanism of ABA Signaling in Response to Abiotic Stress in Plants 173 - Ankush Ashok Saddhe, Kundan Kumar, and Padmanabh Dwivedi //
8.1 Introduction 173 // 8.2 Signal Perception and ABA Receptors 175 // 8.3 Negative Regulators of ABA Signaling: Protein Phosphatase 2C (PP2C) 178 // 8.4 Positive Regulators of ABA Signaling: SnRK2 179 // 8.5 ABA Signaling Regulating Transcription Factor 181 // 8.5.1 Basic-Domain Leucine Zipper (bZIP) TF 181 // 8.5.2 AP2/ERF TF 182 // 8.5.3 NAC TF 183 // 8.5.4 WRKY TF 183 // 8.5.5 C2H2 ZF TF 184 // 8.5.6 MYB TF 185 // 8.5.7 bHLH TF 185 // 8.6 Crosstalk Between Various ABA Responsive Pathways in Abiotic Stress 186 // 8.7 Summary and Future Prospects 187 Acknowledgments 188 Abbreviations 188 // References 188 // 9 Abscisic Acid Signaling and Involvement of Mitogen Activated Protein Kinases and Calcium-Dependent Protein Kinases During Plant Abiotic Stress 197 - Aryadeep Roychoudhury and Aditya Banerjee // 9.1 Introduction 197 // 9.2 ABA Signaling in Plants 198 // 9.2.1 ABA as a Phytohormone 198 // 9.2.2 ABA Metabolism 199 // 9.2.3 ABA Transport 199 // 9.2.4 ABA Perception and Signal Transduction 201 // 9.2.4.1 ABA Receptors in Signal Transduction 202 9.2?.2 PP2Cs as Negative Regulators of ABA Signaling 203 // 9.2.4.3 SnRK2 Acting as a Global Positive Regulator of ABA Signaling 205 // 9.3 The Signalosome and Signaling Responses Mediated by ABA: Structural Alterations in ABA by PYR/PYL/RCAR 207 // 9.4 Structural Alterations During PP2C Inhibition by ABA 208 // 9.5 The abil-l Mutation Mystery Solved 208 // 9.6 Basic Leucine Zipper (bZIP) TFs in ABA Signaling 209 // 9.7 Mitogen-Activated Protein Kinase (???) Cascades and Regulation of Downstream Signaling 210 // 9.7.1 Relevance and Crosstalk of MAPKs in Plant Abiotic Stresses 212 // 9.7.2 The ??? Families of Ambidopsis and Rice 212 // 9.7.2.1 Arabidopsis 212 // 9.7.2.2 Rice 213 // 9.7.3 ??? Cascades Regulating Abiotic Stress Signaling 21S // 9.7.3.1 Salt Stress 215 // 9.7.3.2 Drought Stress 215 //
9.7.3.3 Oxidative Stress 215 // 9.7.3.4 Ozone Stress 216 // 9.7.3.5 Heavy Metal Stress 216 // 9.7.3.6 Temperature Stress 216 // 9.7.3.7 ABA-Induced Activation of MAPKs 216 // 9.8 Calcium Dependent Protein Kinases (CDPKs) 219 // 9.8.1 CDPK Activities 221 // 9.8.1.1 Regulation of CDPK Activity 221 // 9.8.1.2 CDPK in ABA Signaling 221 // 9.8.2 Relevance and Crosstalk of CDPKs in Plant Abiotic Stresses 223 // 9.8.3 CDPKs as Potent Signaling Hubs 224 // 9.9 MAPK-CDPK Crosstalk 225 // 9.10 Conclusion and Future Perspectives 226 // Acknowledgments 227 // References 227 // 10 Abscisic Acid Activates Pathogenesis-Related Defense Gene - Signaling in Lentils 243 // Rebecca Ford, David Tan, Niloofar Vaghefi, and Barkat Mustafa // 10.1 Plant Host Defense Mechanisms 243 // 10.1.1 Host versus Non-Host Resistance 243 // 10.1.2 Preformed and Induced Defense Responses 244 // 10.1.3 Reactive Oxygen Species (ROS) During an Oxidative Burst 245 // 10.1.4 Hypersensitive Response (HR) 245 // 10.1.5 Systemic Acquired Resistance (SAR) 246 // 10.2 Phytoalexins and Pathogenesis-Related (PR) Proteins 247 // 10.3 The Role of Plant Hormones in Pathogen Defense 247 // 10.3.1 Salicylic Acid 247 // 10.3.2 Jasmonic Acid 248 // 10.3.3 Ethylene 249 // 10.3.4 Abscisic Acid 249 // 10.3.5 Conservation and Crosstalk Within Signaling Pathways 250 // 10.4 The Lentil Ascochyta lentis Pathosystem 251 // Key Defense-Related Genes Involved in Ascochyta lentis Defense 252 // The Effect of Exogenous Hormone Treatment on PR4 and PR10 // Transcription in Lentils 255 // Bioassays and cDNA Production 255 // PR Gene Amplification and Expression Profiling 255 // Effects of ABA, ACC, MeJA, and SA on Lentil PR4 Gene Expression 256 // Effects of ABA,ACC,MeJA, and SA on Lentil PRIO Gene Expression 256 // Conclusions 259 // References 261 //
11. Signaling and Modulation of Non-Coding RNAs in plants by Abscisic Acid (ABA) 271 - Raj Kumar Joshi, Swati Megha, Urmila Basu, and Nat N.V. Kav Introduction 271 // Biogenesis of Non-Coding RNAs in Plants 273 // Mode of Action of ncRNAs in Plants 274 // Mechanism of Action in Small RNAs 274 // Mechanism of Action of IncRNAs 275 // ABA Signaling in Plants 276 // ABA Biosynthesis, Transport, and Catabolism 276 // ABA Signal Transduction 278 // C/s-Acting Elements and Transcription Factors in ABA-Mediated Gene Expression 278 // ABA-Mediated Stomatal Closure During Pathogen Attack 280 // Non-Coding RNAs and ABA Response 280 // MiRNAs in ABA Signaling 280 // Other ncRNAs in ABA Signaling 283 // Conclusion and Future Prospects 285 // References 286 // 12. Ethylene and Stress Mediated Signaling in Plants: A Molecular Perspective 295 - Priyanka Agarwal, GitanjaliJiwani, Ashima Khurana, Pankaj Gupta, and Rahul Kumar // Introduction 295 // Types of Stress 295 // Temperature Stress 296 // Cold Stress 296 // Heat Stress 296 // Water Stress 297 // Drought Stress 297 // Salinity stress 298 // Overview of Stress Signaling 298 // Perception of Stress 298 // Perception at Plasma Membrane 298 // Perception by Changed Ca2+ Concentration 299 // Action of Different Secondary Messengers 299 // Reactive Oxygen Species (ROS) 299 // 12.3.2.2 Lipid Messengers 300 // 12.3.3 Ca2+ as an Intermediate Signal Molecule 301 // 12.3.4 Role of ??? in Stress Signaling 302 // 12.3.5 Role of Ethylene During Stress 302 // 12.3.5.1 Ethylene 302 // 12.3.5.2 Ethylene Biosynthesis 302 // 12.3.5.3 Ethylene Perception 303 // 12.3.5.4 Role of Ethylene in Fruit Ripening 303 // 12.3.6 Role of Ethylene in Abiotic Stress 304 // 12.3.6.1 Cold Stress 304 // 12.3.6.2 Heat Stress 306 // 12.3.6.3 Salinity Stress 307 // 12.3.6.4 Ethylene and Drought Stress 310 // 12.3.6.5 Ethylene and Flooding Tolerance 310 //
12.3.7 Role of Ethylene in Biotic Stress 310 // 12.3.7.1 Ethylene Signal Perception in Response to Biotic Stress in Plants 310 // 12.3.7.2 Mechanism of Action of Ethylene in Plant Pathogen Interaction 311 // 12.3.7.3 Crosstalk of Hormones in Plant Defense 312 // 12.3.7.4 Crosstalk of Ethylene with Other Hormones in Response to Biotic Stress 313 // 12.3.8 Role of ABA in Stress 315 // 12.3.9 Role of Other Phytohormones in Stress 316 // 12.4 Conclusion 316 Acknowledgment 316 References 317 // 13 Regulatory Function of Ethylene in Plant Responses to Drought, // Cold, and Salt Stresses 327 // Hoixia Pei, Honglin Wong, Lijuan Wong, Fongfong Zheng, ond Chun-Hoi Dong // 13.1 Functional Roles of Ethylene in Plant Drought Tolerance 328 // 13.2 Ethylene Signaling in Plant Cold Tolerance 330 // 13.3 Ethylene Signaling and Response to Salt Stress 333 // 13.4 Conclusion 336 References 337 // 14 Plant Nitric Oxide Signaling Under Environmental Stresses 345 // lone Solgodo, Holley Coixeto Oliveiro, ond Morilio Gospor // 14.1 Introduction 345 // 14.2 Mechanisms of NO Action in Plants 346 // 14.3 The Control of NO Homeostasis in Plants 348 // 14.3.1 NO Synthesis in Plants 349 // 14.3.2 NO Degradation in Plants 350 // 14.3.3 Regulation of NO Homeostasis by S-Nitrosothiols Through the Nitrogen Assimilation Pathway 350 // 14.4 NO and the Response to Abiotic Stresses 351 // 14.4.1 Drought 351 // 14.4.2 Hypoxia Stress 352 // 14.4.3 Salt Stress 354 // 14.4.4 Heavy Metals 355 // 14.4.5 Low Temperature Stress 356 // 14.5 Conclusions and Future Prospects 358 // References 360 // 15 Cell Mechanisms of Nitric Oxide Signaling in Plants Under Abiotic Stress Conditions 371 // Yuliya A. Krasylenko, Alla I. Yemets, and Yaroslav B. Blume // 15.1 Introduction 371 // 15.2 Duality of RNS: Key Secondary Messengers in Plant Cells versus Nitrosative Stress Agents 373 //
15.3 Tyrosine Nitration as a Hallmark of Nitrosative Stress and Regulatory Post-Translational Modification 376 // 15.4 NO and Environmental Abiotic Challenges 380 // 15.4.1 Mechanical Wounding and Programmed Cell Death Progression 380 // 15.4.2 Chilling, Cold/Heat Stress, and Acclimation 380 // 15.4.3 Light Overexposure and UV Irradiation 382 // 15.4.4 Air (Ozone) and Soil Pollution (Heavy Metals, Herbicides) 384 // 15.4.5 Osmotic Stresses: High Salinity, Drought, and Flooding 386 // 15.5 Conclusions and Future Perspectives 388 Acknowledgments 389 // References 389 // 16 S-Nitrosylation in Abiotic Stress in Plants and Nitric Oxide Interaction with Plant Hormones 399 // Ankita Sehrawat and Renu Deswal // 16.1 Introduction 399 // 16.2 S-Nitrosylation in Abiotic Stress 400 // 16.2.1 Salinity Stress 401 // 16.2.2 Cold Stress 406 // 16.2.3 Desiccation Stress 406 // 16.2.4 High Light Stress 406 // 16.2.5 Cadmium and 2,4-Dichlorophenoxy Acetic Acid (2,4-D) Stress 406 // 16.3 Nitric Oxide and Plant Hormone Interaction 407 // 16.4 Conclusions and Future Areas of Research 409 References 409 // 17 Salicylic Acid Signaling and its Role in Responses to Stresses in Plants 413 // Pingzhi Zhao, Gui-Hua Lu, and Yong-Hua Yang // 17.1 Introduction 413 // 17.2 Salicylic Acid Biosynthesis and Metabolism in Plants 414 // 17.2.1 SA Biosynthesis 414 // 17.2.2 SA Metabolism 416 // 17.3 Salicylic Acid: A Central Molecule in Plant Responses to Stress 417 // 17.3.1 SA-Mediated Plant Resistance to Disease 417 // Contents xiii // 17.3.2 SA-Mediated Abiotic Stress Tolerance 419 // 17.3.2.1 Drought Stress 419 // 17.3.2.2 Cold and Heat Stress 421 // 17.3.2.3 Salinity Stress 423 // 17.3.2.4 Heavy Metal Stress 424 // 17.3.2.5 Ozone Stress and UV Radiation 425 // 17.3.3 Relationship Between Biotic and Abiotic Stress Factors 426 //
17.4 Salicylic Acid in Relation to Other Phytohormones in Response to Plant Stress Status 427 // 17.5 Conclusion 429 References 429 // 18 Glucose and Brassinosteroid Signaling Network in Controlling Plant // Growth and Development Under Different Environmental Conditions 443 // Manjul Singh, Aditi Gupta, and Ashverya Laxmi // 18.1 Introduction 443 // 18.2 Glucose Homeostasis and Signaling in Plants 444 // 18.3 Brassinosteroid Biosynthesis and Signaling 447 // 18.4 Role of Glc in Plant Adaptation to Changing Environmental Conditions 452 // 18.5 Role of BR in Plant Adaptation to Changing Environmental Conditions 454 // 18.6 Glc-BR Crosstalk and its Adaptive Significance in Plant Development 458 // 18.7 Conclusion and Future Perspective 459 // References 459 // Index 471
(OCoLC)967457044

Zvolte formát: Standardní formát Katalogizační záznam Zkrácený záznam S textovými návěštími S kódy polí MARC